

The
Complete
Reference ™

Microsoft®

SharePoint® 2010

Web Applications

Charlie Holland

New York Chicago San Francisco

 Lisbon London Madrid Mexico City

 Milan New Delhi San Juan

 Seoul Singapore Sydney Toronto

Copyright © 2011 by The McGraw-Hill Companies. All rights reserved. Except as permitted under the United States Copyright
Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or
retrieval system, without the prior written permission of the publisher.

ISBN: 978-0-07-174457-7

MHID: 0-07-174457-6

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-174456-0,

MHID: 0-07-174456-8.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trade-
marked name, we use names in an editorial fashion only, and to the benefi t of the trademark owner, with no intention of infringe-
ment of the trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate
training programs. To contact a representative please e-mail us at bulksales@mcgraw-hill.com.

Trademarks: McGraw-Hill, the McGraw-Hill Publishing logo, The Complete ReferenceTM, and related trade dress are trademarks
or registered trademarks of The McGraw-Hill Companies and/or its affi liates in the United States and other countries and may not
be used without written permission. All other trademarks are the property of their respective owners. The McGraw-Hill Companies
is not associated with any product or vendor mentioned in this book.

Information has been obtained by McGraw-Hill from sources believed to be reliable. However, because of the possibility of
human or mechanical error by our sources, McGraw-Hill, or others, McGraw-Hill does not guarantee the accuracy, adequacy, or
completeness of any information and is not responsible for any errors or omissions or the results obtained from the use of such
information.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGrawHill”) and its licensors reserve all rights in and to
the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and
retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works
based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior
consent. You may use the work for your own noncommercial and personal use; any other use of the work is strictly prohibited.
Your right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRAN-
TIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING
THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK
OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-
Hill and its licensors do not warrant or guarantee that the functions contained in the work will meet your requirements or that
its operation will be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for
any inaccuracy, error or omission, regardless of cause, in the work or for any damages resulting therefrom. McGraw-Hill has no
responsibility for the content of any information accessed through the work. Under no circumstances shall McGraw-Hill and/or
its licensors be liable for any indirect, incidental, special, punitive, consequential or similar damages that result from the use of or
inability to use the work, even if any of them has been advised of the possibility of such damages. This limitation of liability shall
apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort or otherwise.

Practical Guides for
Microsoft SharePoint 2010 Users

of Every Level

Available everywhere books are sold, in print and ebook formats.

For Nicola, Cameron, and Fraser

About the Author
Charlie Holland (Scotland, UK) is a freelance software developer with 15 years’
experience developing software for some of the world’s best-known companies,
including IBM, Microsoft, Sony, and Hewlett Packard. As a SharePoint aficionado
since the early days of SharePoint Team Services and SharePoint Portal Server
2001, since the beta release of SharePoint 2007, Charlie has been exclusively
engaged in designing and delivering applications based on the features offered
by the SharePoint platform for a number of UK clients. Charlie holds MCTS,
MCPD, MCT, MCITP, CTT+, and MCSE Microsoft certifications. You can find
Charlie online at http://www.chaholl.com or http://twitter.com/chaholl and
feedback or questions are always welcome.

About the Technical Reviewers
Craig Porter (Scotland, UK) is an MCTS-certified freelance SharePoint all-
rounder. Craig has been involved in SharePoint development, administration,
architecture, and consultancy for the past 10 years, having delivered a number
of SharePoint projects both large and small and of varying requirements and
complexity. Craig first got involved in SharePoint in late 2000 when asked to
contribute to a prerelease beta version of SharePoint Portal Server 2001, then
known as Tahoe. Since then, Craig has dedicated his working life to getting the
most out of the SharePoint platform and understanding its many intricacies.
You can find Craig’s web site at http://collaborativetechnologysolutions.co.uk.

Mike Catignani (Scotland, UK) is technical director and founder of
Solutions Developed, a company specializing in SharePoint implementations.
The company completed its first SharePoint deployment in 2003 for The Deer
Commission of Scotland and has been actively involved in delivering SharePoint
solutions ever since. Mike is very proud of the solutions he’s delivered for many
major blue chip companies such as Daimler, HSBC, Bacardi, Ministry of Defence
(UK), and the UK’s Emergency Fire and Rescue Service, in addition to many
other organizations perhaps not so well known but equally important. Mike holds
many IS qualifications, including the Microsoft accreditations MCSD and MCT.
To learn more about Mike, visit his web site at www.solutionsdeveloped.co.uk.

http://www.chaholl.com
http://twitter.com/chaholl
http://collaborativetechnologysolutions.co.uk
www.solutionsdeveloped.co.uk

Contents at a Glance

 Part I Introduction to SharePoint 2010 Development

 1 The Microsoft SharePoint 2010 Platform 3
 2 Developing with SharePoint 2010 9

 Part II Presentation Layer

 3 Presentation Layer Overview 33
 4 Client Object Model 53
 5 InfoPath Forms Services 79
 6 Enterprise Content Management 107
 7 User Interface Customization 133

 Part III Application Services

 8 Application Services Overview 153
 9 Service Application Framework 169
 10 Word Automation Services 203
 11 Workfl ow 223
 12 Excel Services 265

 Part IV Data Access Layer

 13 Data Access Overview 311
 14 LINQ to SharePoint and SPMetal 337
 15 Business Connectivity Services 387
 16 Enterprise Search 423
 17 User Profi les and Social Data 443
 18 Business Intelligence 463

 Part V Configuration

 19 Packaging and Deployment Model 493
 20 PowerShell 517

 Index 527

 v

This page intentionally left blank

 vii

 Acknowledgments . xv
 Introduction . xvii

 Part I Introduction to SharePoint 2010 Development

 Chapter 1 The Microsoft SharePoint 2010 Platform . 3

 SharePoint Architecture . 4
 User Features . 5
 Offi ce Integration. 5
 Offi ce Web Applications . 6
 SharePoint Workspace . 6
 Standards Compliant Web Interface. 6
 Summary . 7
 Chapter 2 Developing with SharePoint 2010 . 9

 Visual Studio 2010 and SharePoint Designer 2010 10
 TypeMock Isolator . 10
 Red Gate .NET Refl ector . 10
 U2U CAML Query Builder . 10
 Sysinternals DebugView . 11
 Development Server Confi guration . 11
 Additional Development Environment Confi guration 12
 Debugging and Unit Testing SharePoint Applications 12
 SharePoint Fundamentals . 14
 Creating a Web Application. 14
 Creating a Site Collection . 15
 Creating a Site . 15
 Server Object Model . 17
 Administration and Confi guration Classes. 20
 Site Provisioning and Content Access Classes . 21
 Saving Changes Using the Server Object Model . 25
 Best Practice Guidelines . 25
 Error Handling. 27
 Developer Toolbar . 28
 Sandboxed Solutions. 29
 Debugging Sandboxed Solutions . 30
 Managing Sandboxed Solutions . 30
 Summary . 30

Contents

viii MicroSoft SharePoint 2010 Web Applications: The Complete Reference

 Part II Presentation Layer

 Chapter 3 Presentation Layer Overview. 33

 Page Types . 33
 Application Pages . 33
 Site Pages . 34
 Ghosting/Unghosting . 35
 Executing Server-Side Code . 35
 Mobile Pages . 40
 Ribbon . 40
 Ribbon Architecture . 40
 Extending the Ribbon . 42
 Handling Events from the Ribbon . 46
 Disabling Controls . 47
 Complex Event Handling . 47
 Summary . 52
 Chapter 4 Client Object Model . 53

 Architecture . 53
 Demonstration Environment Setup . 55
 Host Silverlight in SharePoint . 55
 Using the Silverlight Web Part. 59
 Referencing the JavaScript Client Object Model . 60
 Available Client-side Objects. 61
 ClientContext . 61
 Operation Batching . 64
 Retrieving Data . 65
 In-place Load . 65
 Queryable Load . 71
 Adding Data . 71
 Updating Data . 72
 Deleting Data . 74
 Using the Status Bar, Notifi cations, and the Dialog Framework 75
 The Status Bar . 75
 Notifi cations . 76
 Dialogs. 76
 Summary . 77
 Chapter 5 InfoPath Forms Services . 79

 InfoPath Overview . 79
 InfoPath Forms Services . 79
 BrowserForm Web Part . 81
 Using InfoPath Forms in SharePoint . 86
 Accessing Data in InfoPath Forms . 96
 Data Connection Libraries . 99
 Modifying UDC Files . 99
 Responding to Events in InfoPath Forms . 101
 Using the Rules Engine . 101
 Adding Code-Behind . 103
 Summary . 105
 Chapter 6 Enterprise Content Management. 107

 Managed Metadata . 107
 Confi guring the Managed Metadata Service . 108

Contents ix

 Managed Metadata Field . 109
 Metadata Navigation . 111
 Content Organizer . 112
 Large Libraries . 114
 Document Management . 114
 Content Management Users . 114
 Multi-user Editing. 115
 Item-Level Permissions . 115
 Workfl ows . 115
 Document Sets . 116
 Document IDs. 118
 Document Metadata. 120
 Records Management . 120
 Digital Asset Management. 120
 Media Content Types . 120
 Rich Media Content . 121
 Disk-based Caching . 121
 Remote BLOB Storage. 122
 Web Content Management . 122
 Page Model . 122
 Publishing . 124
 Content Deployment . 130
 Web Parts and Fields . 131
 Content Query Web Part . 131
 Summary . 131
 Chapter 7 User Interface Customization . 133

 Working with Pages . 133
 Master Pages . 133
 Creating a Custom Master Page . 134
 Delegate Controls. 136
 Cascading Style Sheets . 137
 Themes . 137
 Adding Custom Functionality . 140
 Web Parts . 140
 Improving the Property Editing Experience: Editor Parts 144
 Visual Web Parts . 145
 Summary . 149

 Part III Application Services

 Chapter 8 Application Services Overview . 153

 Handling Events . 153
 Event Hosts . 154
 Event Receivers. 154
 Receiver Base Classes . 154
 Synchronous and Asynchronous Events . 155
 Security Context . 156
 Event Properties . 157
 Packaging and Deployment Events . 158
 Creating Event Receivers. 159
 Enabling or Disabling Event Firing. 163

x Microsoft SharePoint 2010 Web Applications: The Complete Reference

 Binding Events . 165
 E-mail Events . 167
 Summary . 167
 Chapter 9 Service Application Framework. 169

 Implementation . 169
 Server-side Implementation. 169
 Client-side Implementation. 171
 Client/Server Communication . 173
 Confi guring Service Applications. 173
 Connecting to Remote Applications. 174
 Topology Service . 175
 Demonstration Scenario . 175
 Prerequisite: Generating a New AppId. 175
 Creating a New SharePoint Project. 176
 Adding Server-side Confi guration Classes . 176
 Adding Client-side Confi guration Classes . 179
 Adding Windows Communication Foundation Components. 181
 Implementing Translation Functionality . 183
 Installing Service Application Components . 185
 Provisioning Service Application Instances . 187
 Using Service Application in Front-end Components 196
 Managing Service Applications . 199
 Summary . 202
 Chapter 10 Word Automation Services . 203

 Word Automation Services . 203
 Creating Conversion Jobs . 204
 Checking Status of Conversion Jobs . 205
 OpenXML . 206
 Getting Started with OpenXML . 206
 Demonstration Scenario . 207
 Architecture . 207
 Creating a Custom Content Type . 208
 Customizing the DocumentSetProperties Web Part 210
 Creating a Custom Job Defi nition. 214
 Combine Documents Using OpenXML . 215
 Converting an OpenXML Document to an Alternative Format 217
 Customizing Document Set Welcome Page . 219
 Create a Document Library . 220
 Create a Document Template . 220
 Summary . 222
 Chapter 11 Workfl ow . 223

 Workfl ow Foundation Fundamentals . 223
 Types of Workfl ow . 224
 Making Workfl ows Work . 225
 Custom Workfl ow Activities . 226
 External Activities via Pluggable Workfl ow Services 227
 Creating Workfl ows . 227
 Demonstration Scenario . 228
 Prerequisites . 229

Contents xi

 Designing a Workfl ow Using Visio 2010. 231
 Using the Microsoft SharePoint Workfl ow Template. 232
 Implementing a Visio Workfl ow Using SharePoint Designer 233
 Using Visio Services to Visualize Workfl ow State . 238
 Creating a Pluggable Workfl ow Service . 240
 Creating a Sample WCF Calculation Service . 241
 Creating a Pluggable Workfl ow Service . 250
 Calling a SharePoint-Hosted WCF Service . 256
 Creating a Workfl ow Using Visual Studio 2010 . 257
 Using the Visual Studio Workfl ow Designer. 258
 Creating a Workfl ow Using SharePoint Designer . 262
 Summary . 264
 Chapter 12 Excel Services . 265

 Excel Capabilities on SharePoint 2010. 266
 Excel Application Services. 266
 Excel Client Service . 266
 Excel Web App . 269
 PowerPivot . 270
 Confi guring Excel Services . 270
 Service Application Settings . 271
 Demonstration Scenario . 273
 Set Up Adventure Works Sample Database . 273
 Create a Sample Site . 273
 Create a Workbook for Use with Excel Services. 274
 Confi gure a Data Connection . 276
 Confi gure a PivotTable to Act like an External Data List 276
 Using Named Ranges in Excel Services . 277
 Perform Calculations Using PivotTable Values . 278
 Add a PivotChart . 280
 Publish to Excel Services . 281
 Create a User Interface Using the Excel Web Access Web Part 281
 Adding Interactivity Using a Slicer . 282
 Using the Excel Services REST API . 285
 Excel Services REST API Syntax . 285
 Retrieving a PivotTable Using REST . 286
 Using REST-Generated Content Within a Web Part Page 287
 User-Defi ned Functions. 288
 Attributes Used when Creating UDFs . 288
 Usable Data Types Within UDFs . 289
 Creating a UDF Using Visual Studio 2010 . 289
 Confi guring UDFs for Development. 292
 Using UDFs Within Excel . 293
 Debugging UDFs . 294
 Confi guring UDFs for Production . 295
 Using the JavaScript Object Model. 297
 A Whirlwind Tour of Excel JSOM . 297
 Adding a Content Editor Web Part Containing JavaScript 298
 Creating JSOM Content in an External File. 299
 Using Data Connection Libraries . 300
 Restricting Data Connection Types. 301

xii Microsoft SharePoint 2010 Web Applications: The Complete Reference

 Adding Connections to Data Connection Libraries 302
 Connecting to Data Using Alternative Credentials 304
 Confi guring the Secure Store Service. 305
 Summary . 308

 Part IV Data Access Layer

 Chapter 13 Data Access Overview . 311

 Content Types . 311
 Content Type Inheritance . 312
 Content Type Metadata . 316
 Enterprise Content Types . 318
 Columns . 321
 Field Types . 323
 Validation . 330
 Lists and Document Libraries. 331
 Views . 332
 Queries . 332
 Performance . 333
 List Throttling . 334
 Column Indexes . 335
 Summary . 336
 Chapter 14 LINQ to SharePoint and SPMetal . 337

 Overview of LINQ . 338
 Locating Data Using an Iterator . 339
 Locating Data Using an Anonymous Delegate. 340
 Locating Data Using a Lambda Expression . 340
 Locating Data Using LINQ . 341
 LINQ to SharePoint. 341
 Microsoft.SharePoint.Linq.DataContext . 342
 Demonstration Scenario . 344
 Create a Data Structure Using SharePoint 2010 . 346
 Creating Entities Using SPMetal . 353
 Adding Data Using LINQ . 358
 Add Data Generation Buttons to LinqSampleApplication 358
 Deleting Data Using LINQ . 361
 Deleting Sample Data . 361
 Ensuring Referential Integrity. 362
 Querying Data Using LINQ to SharePoint . 365
 Query Limitations . 366
 Performing a Simple Query. 367
 Result Shaping Using LINQ . 370
 Joining Tables Using LINQ . 371
 Combining LINQ to SharePoint and LINQ to Objects 373
 Performing an In-Memory Subquery . 373
 Updating Information Using LINQ to SharePoint . 375
 Disconnecting Entities . 375
 Reconnecting Entities . 376
 Handling Concurrency Errors when Updating Data. 378
 Resolving Change Confl icts . 381
 Summary . 385

Contents xiii

 Chapter 15 Business Connectivity Services . 387

 Business Data Catalog in MOSS 2007. 387
 Components of BCS. 388
 Demonstration Scenario . 391
 Prerequisites . 392
 Connecting to BCS Data Using SharePoint Designer . 392
 Associations. 392
 Stereotypes . 392
 Create an External Content Type . 394
 External Data Picker Control . 400
 Building a .NET Connectivity Assembly. 404
 Pluggable Connector Framework . 405
 Business Data Connectivity Model Project . 405
 Using BCS Data in External Data Columns . 418
 Profi le Pages . 419
 Default Actions on External Content Types . 420
 Summary . 422
 Chapter 16 Enterprise Search. 423

 Components of Enterprise Search . 423
 Architecture . 423
 Indexing Components . 424
 Query Components . 429
 Front-End Components . 435
 Summary . 442
 Chapter 17 User Profi les and Social Data . 443

 Folksonomies, Taxonomies, Tagging, and Rating . 444
 User Profi le Service Application. 445
 Synchronization . 445
 User Properties. 446
 Subtypes . 447
 Audiences . 448
 Organizations . 449
 My Sites. 450
 My Profi le . 452
 My Network. 461
 My Content . 462
 Summary . 462
 Chapter 18 Business Intelligence . 463

 Microsoft Business Intelligence Solution . 464
 Business User Experience . 464
 Business Productivity Infrastructure . 464
 Data Infrastructure. 464
 SharePoint Server 2010 Business Intelligence Platform 465
 Excel Services . 465
 Business Intelligence Web Parts . 465
 PerformancePoint Services . 469
 PowerPivot . 480
 Reporting Services . 485
 Summary . 489

xiv Microsoft SharePoint 2010 Web Applications: The Complete Reference

 Part V Configuration

 Chapter 19 Packaging and Deployment Model . 493

 Working with Packages . 493
 Package Structure. 494
 Package Designer . 494
 Deploying Assemblies. 496
 Features . 496
 Feature Designer . 497
 Activation Dependencies . 497
 Feature Scope . 498
 Feature Activation Rules . 498
 Feature Properties . 499
 Feature Elements . 499
 Feature Receivers . 501
 Upgrading Features . 508
 Site Defi nitions . 512
 Creating Site Defi nitions Using Visual Studio . 512
 Summary . 515
 Chapter 20 PowerShell . 517

 PowerShell Primer . 517
 Using Objects . 518
 Using Functions . 520
 PowerShell for SharePoint . 521
 Connecting to SharePoint Remotely . 521
 PowerShell Permissions . 522
 Working with Site Collections and Sites . 522
 Working with Lists and Libraries. 523
 Working with Content . 524
 Working with Timer Jobs . 524
 Summary . 525
 Index . 527

Acknowledgments

 xv

Before embarking on this book, I did some research to get an idea of what was
involved in such a project. Almost without exception, people told me that the
amount of effort required to write a book is always much more than originally

anticipated.
As a working systems architect and software developer, I often spend much of my time

writing technical documents, and, like many of those who have gone before me, I arrived at
the conclusion that writing a book is pretty much like that. The only difference is the length
of the document. Logical, don’t you think? If only it was that simple!

SharePoint is a huge product, and part of my motivation in writing this book was to enjoy
an opportunity to develop a broader knowledge of the platform. Like many developers, I’ve
been involved in a number of SharePoint projects over the years, but despite that, I’ve never
delved into some aspects of the platform in a meaningful way.

Faced with the task of writing a book on these subjects, I turned to a number of technical
experts for help, including my technical reviewers on this project, Mike Catignani and Craig
Porter. Without the invaluable input of these guys and others such as Martin Hinshelwood,
Andrew Woodward, Spencer Harbar, Andre Vermeulen, Peter Holpar, and Nick Swan, I
would have found it practically impossible to provide coherent explanations of some of
the functionality of the platform. Over and above the assistance provided by this group
of technical experts, I also found Twitter to be an indispensable tool for getting answers
to the most arcane questions even several months before the release of the product. If that
isn’t a case study in the power of social computing, then I don’t know what is.

While getting to the bottom of the technical aspects of the SharePoint platform was
undoubtedly the biggest challenge from my perspective, there is so much more to writing
a book than simply writing the text. As a project that extended over many months and
involved many people, putting my writings together into the finished package that you
currently hold in your hands is the work of a team of dedicated professionals. I would like
to express my thanks and appreciation for the work of the entire team at McGraw-Hill in
making this book possible. I would particularly like to thank Joya Anthony and Roger Stewart
for their patience in dealing with my flexible approach to deadlines.

Many months ago (in fact, it almost seems like a lifetime now), I made contact with
Matt Wagner (www.fresh-books.com) with a view to writing a SharePoint book. I’d like to
thank Matt for his efforts in hooking me up with McGraw-Hill. Without the great work that
Matt did on my behalf, this book would not have been written.

www.fresh-books.com

xvi Microsoft SharePoint 2010 Web Applications: The Complete Reference

Writing a book while working full time and dealing with the demands of a young family
can be a very taxing experience, and without the full support of my family, I can honestly
say that there is no way that this project would have been completed. I’d like to thank my
wife, Nicola, for patiently listening to me rambling on about SharePoint 2010 and how
many chapters I had to complete for months on end. For a long time, it seemed that the
job would never be done, but we got there in the end, and looking back, I appreciate the
many evenings and weekends that my family sacrificed in order to make this book a reality.

Introduction

 xvii

Who Should Read This Book
Microsoft SharePoint 2010 is a large and complex product that serves many audiences and
provides a range of functionality covering areas such as search, document management,
and business intelligence. Each of the many specialist areas that make up SharePoint 2010
warrants a book in its own right to cover the functionality exposed from the perspective
of all audiences. This book takes a comprehensive look at the entire platform as it relates
to a specific audience.

Aimed primarily at software developers with experience in developing software using
the Microsoft .NET Framework, this book covers Microsoft SharePoint as a software
development platform. It places particular emphasis on aspects of the product that can be
leveraged by developers to create custom applications such as user interface customizations
and application layer services. It also provides reusable code samples and real-world
demonstration scenarios, plus high-level technical information that is appropriate for
getting technical architects, software testers, and project managers up to speed with the
capabilities of the platform.

How to Use This Book
With great many features and services available in the SharePoint 2010 platform, it’s highly
unlikely that any single application will use all of them. Nevertheless, it’s important for you
to understand which tools are available before you embark on the design of an application.

To make gaining such an understanding as easy as possible, this book is divided into five
parts. Part I deals with the fundamentals: what is SharePoint, how does it work, and what
tools do I need to get started? This part gives you an idea of what’s involved in developing
applications that leverage the SharePoint platform. The remainder of the book is designed
to be used as a reference for the tools and technologies that are most appropriate for the
task at hand.

The next three parts are named after the three layers that we commonly need to consider
when designing an application: Presentation, Application Services, and Data Access. Each part
contains an overview chapter that covers the key concepts and tools that are most appropriate
for delivering functionality within that layer. The other chapters within each part build on the
knowledge gained in the part overview and address a particular feature or service in detail.

The final part covers aspects that are common to every project: packaging, deployment,
and configuration.

xviii Microsoft SharePoint 2010 Web Applications: The Complete Reference

Many of the chapters in this book feature demonstration scenarios that are effectively
mini-applications that illustrate a specific feature. For the most part, the code samples
found in this book can be executed in isolation, making it easy for you to work through
the book as a means of learning how to use the SharePoint platform.

What This Book Covers
This book consists of 20 chapters organized into 5 parts.

Part I: Introduction to SharePoint 2010 Development

Chapter 1: The Microsoft SharePoint 2010 Platform This chapter provides an
introduction to the SharePoint 2010 product, describing the product history and providing
a high-level description of how the product is implemented within an organization. In
addition, to help you build an understanding of how the product is accessed from a user
perspective, I describe a number of user touch points. Understanding these touch points
will help you build up a picture of SharePoint as a flexible software development platform
offering practically limitless opportunities to leverage tools and technologies with which
many users are already familiar.

Chapter 2: Developing with SharePoint 2010 This chapter looks at the basics of the
SharePoint architecture. We look at the key objects in the server object model as well as
important best practice guidance that ensure that applications targeting the SharePoint
platform run as efficiently and effectively as possible.

Part II: Presentation Layer

Chapter 3: Presentation Layer Overview This chapter provides an overview of the
presentation layer technologies in SharePoint 2010. In addition to covering the different
types of pages that can be hosted within a SharePoint application, Chapter 3 also looks at
customizing the ribbon and discusses how code can be added to hosted pages.

Chapter 4: Client Object Model One of the new additions in SharePoint 2010 is the
Client Object Model. This new API allows developers to create rich user interfaces by
writing client-side code that interacts directly with the SharePoint object model. Chapter 4
covers the key programming conventions of the Client Object Model as well as providing
coverage of the new user feedback interfaces that are available when using the JavaScript
Client Object Model.

Chapter 5: InfoPath Forms Services InfoPath Forms Services was introduced in
Microsoft Office SharePoint Server 2007 (MOSS 2007) as a tool to allow nontechnical users
to create web-based data capture forms. With SharePoint 2010, InfoPath Forms Services is
available with all editions of the product and is the preferred mechanism for customizing
data capture forms throughout the user interface and creating custom data entry forms.
This chapter looks at the main uses of InfoPath forms and provides a number of reusable
examples.

Introduction xix

Chapter 6: Enterprise Content Management In addition to providing a user interface
for the creation of web pages, Enterprise Content Management (ECM) also encompasses
the management of electronically stored documents and other files. SharePoint 2010 offers
many tools and techniques for use in this area, and this chapter provides an overview of
the key technologies available on the platform, including managed metadata, content
deployment, workflows, and the SharePoint publishing page model.

Chapter 7: User Interface Customization This chapter closes Part II by looking at how
the user interface can be customized. Since SharePoint is fundamentally based on ASP.NET,
many of the customization techniques will be familiar to web developers; however, a number
of SharePoint-specific aspects should also be considered, from both a design perspective
and a development perspective. This chapter covers the development of web parts and
provides detail on the new themes capability introduced in SharePoint 2010.

Part III: Application Services

Chapter 8: Application Services Overview This chapter provides an overview of the
application services that are available on SharePoint 2010. Setting the scene for further
explanation of these services in subsequent chapters, Chapter 8 provides an in-depth look
at one of the most basic of application services: event handling. For the most part, the
entry point to any application service is the triggering of an event, either directly via the
user interface or indirectly via another server-side workflow process. This chapter helps you
understand and develop skills required to respond to SharePoint events in a manner most
appropriate for a given application design.

Chapter 9: Service Application Framework SharePoint 2010 introduces a new service
application framework that can be used by developers to create scalable, reusable, load-
balanced services. Although for the most part the clients for these services will commonly
be SharePoint applications, the Service Application Framework is by no means limited to
services in SharePoint; in fact, the flexibility of the Service Application Framework means
that hosted services can be deployed using a range of technologies and can, therefore, be
accessed by practically any client application. This chapter provides an in-depth discussion
of the key components of the Service Application Framework and offers a reusable example
that can act as the basis for any custom service application.

Chapter 10: Word Automation Services Several new services are available in SharePoint
2010, and providing full coverage of all of them is beyond the scope of this book. However,
one common requirement when you are developing SharePoint applications is to process
data that’s stored in Microsoft Office documents. Chapter 10 provides a sample application
that leverages the new Word Automation Services functionality together with OpenXML
to combine information stored in Microsoft Word documents into a read-only Adobe
Acrobat file. In earlier versions of SharePoint, such functionality would require the services
of a third-party component and possibly the server-side automation of the Microsoft Word
application. With SharePoint 2010, such tasks can be performed more robustly using Word
Automation Services.

xx Microsoft SharePoint 2010 Web Applications: The Complete Reference

Chapter 11: Workflow There’s more to workflow than approving expense forms.
Workflow provides a new programming paradigm and is a viable alternative for many
business applications. Chapter 11 looks at how SharePoint 2010 enables workflow-based
application development. It demonstrates how SharePoint-hosted workflows can
communicate easily with external systems. SharePoint Designer allows nontechnical users
to customize workflows without having to delve into the code. This chapter looks at how
developers can create custom actions that can then be used by nontechnical users to
model business processes. As well as discussing the capabilities offered by Visual Studio and
SharePoint Designer, this chapter introduces Visio Services and looks at how Visio can be
used to model business processes that can be imported into SharePoint and implemented
as a workflow with full Visio visualization support.

Chapter 12: Excel Services At first glance, it may seem that nothing much has changed
in Excel Services between MOSS 2007 and SharePoint 2010. This is not the case, however, as
a number of improvements have been made, most notably the introduction of a JavaScript
Object Model and a REST API, both of which enable the creation of a highly interactive user
experience. Chapter 12 provides comprehensive coverage of Excel Services, from connecting
to data sources, to utilizing the JavaScript Object Model to update values in an Excel chart.

Part IV: Data Access Layer

Chapter 13: Data Access Overview Many years ago, when I began studying computer
science, a professor insisted that all application design should begin with the data. This
made sense 20-odd years ago when applications were commonly nothing more than data
capture tools, but things have moved on a bit since then: although the data is still a critical
element in any application design, it’s not necessarily the be-all and end-all. In modern
application design, the ability to access data from ever-changing data sources is much
more important than the actual structure of the data itself, and this is certainly true with
the SharePoint platform. A number of data access strategies are included in SharePoint,
and Chapter 13 kicks off Part IV by providing an overview of how data is represented in
SharePoint and the various approaches you can take when designing a data access layer.
Subsequent chapters address the various methods for working with data in more detail.

Chapter 14: LINQ to SharePoint and SPMetal As discussed in Chapter 13, the
underlying data structure of SharePoint is dynamic—that is, it can represent data from
a range of sources. One consequence of this flexibility is that, prior to the release of
SharePoint 2010, programmatically using data was not strongly-typed, often leading to code
that could be difficult to maintain or refactor. With SharePoint 2010, the introduction of
LINQ and SPMetal, a tool for generating strongly typed data access objects, means that
more maintainable code is within easy reach of any developer. Chapter 14 provides an
overview of LINQ and the technologies that enable it before moving on to look at using
SPMetal and the capabilities provided by LINQ to SharePoint.

Chapter 15: Business Connectivity Services MOSS 2007 introduced the Business
Data Catalog as a tool to surface line-of-business data in SharePoint applications. With
SharePoint 2010, the Business Data Catalog has evolved to Business Connectivity Services

Introduction xxi

(BCS), a number of services that allow SharePoint and non-SharePoint applications to use
data from practically any source. While the Business Data Catalog was limited to read-only
access to data, BCS provides full read/write capability, and, furthermore, by using external
content types, a SharePoint application can work with external data in exactly the same way
as it would with data that’s stored and managed within a SharePoint list. Chapter 15 provides
an overview of the components of BCS before introducing a demonstration scenario that
provides the basis for the reusable code samples used in the chapter.

Chapter 16: Enterprise Search The SharePoint data model is flexible enough to
represent practically any type of data from any source. However, the ability to represent all
this data gives rise to another problem: how do users find what they need? The enterprise
search functionality in SharePoint Server 2010 addresses this problem by providing a
scalable, flexible architecture for indexing content and responding to search queries.
Furthermore, by customizing the user interface components for capturing search queries
and processing results, you can develop customized search applications. Chapter 16 provides
details of the three main components of enterprise search—indexing components, query
components, and front-end components—and provides reusable code samples for each
component, describing how each can be customized and used in custom code.

Chapter 17: User Profiles and Social Data With the growth of social computing giants
such as Facebook, MySpace, and Twitter, it has become apparent that social computing
is the killer app that web observers have been searching for since the medium came into
widespread use some 20 years ago. Although social computing is all about communication,
the very nature of the tool gives rise to rich personalization opportunities, and it is via
this personalization that content and data become relevant to the audience using it. This
relevance sets up the virtuous cycle that fuels the widespread adoption of social computing.
Users no longer need to search for content; instead, by analyzing their social graph, they
can have content presented to them automatically. How does this relate to SharePoint?
The answer is in the built-in social data capabilities of the platform. From an application
design perspective, the two key aspects of social computing are the generation of social
data, by allowing users to create connections and specify their interests and activities, and
the analysis of social data, by using the data gathered to provide rich personalization. The
SharePoint platform addresses both of the aspects, and Chapter 17 looks at the tools and
technologies behind each one, providing reusable examples of how a custom application
can be enabled to provide custom social data.

Chapter 18: Business Intelligence This chapter closes Part IV by looking at the Business
Intelligence capabilities of the SharePoint platform. Chapter 12 provided an in-depth
discussion of Excel Services, and Chapter 18 builds on this to look at related technologies
such as PerformancePoint Services, PowerPivot, and Reporting Services. By combining
these tools and technologies, you can use SharePoint not only as a portal for displaying
Business Intelligence data, but also as a repository for user-generated reports and data
sources. Chapter 18 provides examples of each technology and describes the key features
of each, which makes it possible for application developers to determine which technology
is most appropriate for the task at hand.

xxii Microsoft SharePoint 2010 Web Applications: The Complete Reference

Part V: Configuration

Chapter 19: Packaging and Deployment Model Chapter 19 kicks off the final part by
looking at the packaging and deployment model in SharePoint 2010. Throughout the
various examples in the book, the built-in packaging and deployment capabilities of Visual
Studio 2010 are used implicitly; however, when it comes to embarking on real-world projects,
you’ll need a proper understanding of the packaging and deployment model. This chapter
covers the core elements of the model, such as packages, features, and site definitions. The
feature framework is emphasized as the recommended approach to packaging and deploying
solutions in SharePoint 2010. In addition to covering the creation of new solutions, the
chapter also looks at the new functionality introduced in SharePoint 2010 to accommodate
upgrades.

Chapter 20: PowerShell This chapter provides an overview of the system administration
capabilities exposed via PowerShell. In previous versions of SharePoint, a SharePoint-specific
tool, STSADM, was used to provide command-line access to various system administration
and configuration functionality. With SharePoint 2010, the recommended approach, in
line with Microsoft’s overall strategy for command-line system administration, is to use
PowerShell. While STSADM is still available in SharePoint 2010, a number of functions can
be performed only using PowerShell. Users unfamiliar with PowerShell, or those who have
used STSADM for many years, may be resistant to learning PowerShell; to aid the transition,
the chapter begins with an introduction to the core syntactical elements of PowerShell
before moving on to provide examples of how it can be used to manage SharePoint.

Introduction to SharePoint
2010 Development

PART

I
CHAPTER 1
The Microsoft
SharePoint 2010 Platform

CHAPTER 2
Developing with
SharePoint 2010

This page intentionally left blank

CHAPTER

3

The Microsoft SharePoint
2010 Platform1

So what is SharePoint? And more important, what is the SharePoint 2010 Platform and how
can it be used to develop applications?

The SharePoint product has been around for some time, with the first version being
released in 2001 as SharePoint Portal Server 2001. Things have moved on a bit since then.
Following the acquisition of NCompass Labs, a content management system (CMS) vendor,
Microsoft launched a new product, Content Management Server 2001. In 2003, Microsoft
launched SharePoint Portal Server 2003 as well as an updated version of Content Management
Server. These products were ultimately combined to become Microsoft Office SharePoint
Server 2007 (MOSS) in late 2006.

While this was going on Microsoft also acquired ProClarity, a business intelligence (BI)
vendor, and Groove, a peer-to-peer collaboration tool vendor. In 2007, Microsoft released
PerformancePoint, a BI solution that was integrated with SharePoint and derived from the
technology acquired from ProClarity. With MOSS 2007, Groove still existed as a stand-alone
product, but now in SharePoint 2010, the features of Groove have been integrated into the
platform. So, in answer to the question “What is SharePoint?” SharePoint 2010 is a fully
integrated platform that is made up of the best bits of many tried-and-tested products.

There’s more to SharePoint than a collection of useful business tools, however. Creating
such tight integration is no easy feat, and to make it happen, the good people at Microsoft
have effectively deconstructed each of the products and pieced them back together into
a software development platform that is based on the .NET Framework. In a sense, the
SharePoint 2010 Platform is the .NET Framework with a whole host of reuseable application
services such as content management, business intelligence, offline synchronization, and
workflow.

How can it be used to develop applications? The answer is simple: open Visual Studio
and start typing in the language of your choice. Of course, you’ll need to learn about a few
new object models and you’ll need a good understanding of the platform architecture, but
fundamentally developing applications using the SharePoint platform is exactly the same as
developing applications using the .NET Framework. There are no new languages to learn
and the improved tooling in SharePoint 2010 means that most of the work can be done in
Visual Studio.

4 PART I Introduction to SharePoint 2010 Development4 PART I Introduction

The aim of this book is to provide the necessary guidance to allow developers who are
already comfortable with the .NET platform and the Visual Studio toolset to make full use
of the SharePoint platform when developing custom applications.

SharePoint is more than a document management tool, a content management tool, or
an application that allows users to create collaborative web sites. Behind all of this, SharePoint
is a new kind of operating system that runs across an entire organization and provides the
tools and services that information workers need on a day-to-day basis.

Organizations will always have line-of-business applications, but what about the myriad
administrative applications—the Access databases, Excel spreadsheets, custom .NET
application for tracking widget returns? What about the business data that’s stored in an
incalculable number of Word documents and PDF files on desktop PCs and network file
shares? What about the holiday request forms that get filled in and stuck in a filing cabinet
somewhere? The SharePoint platform provides the tools and technologies to manage all of
these processes and all of this data in a single unified manner. Building applications that
leverage this platform provides an unparalleled level of visibility and integration—all using
the familiar toolset of Microsoft Visual Studio 2010.

SharePoint Architecture
The SharePoint platform is delivered via a server farm architecture, shown in the following
example:

Example SharePoint 2010 Farm

Load-balanced web servers

Load-balanced application servers

Database servers

Each farm can have one or more servers and can be scaled out to meet requirements.
As you’ll see in Chapter 9, at its most fundamental, the SharePoint platform is a collection
of centrally managed services that are automatically installed and configured on the various
servers within the farm. Among these services, one of the most prevalent is the web service

Chapter 1 The Microsoft SharePoint 2010 Platform 5

P
a

rt
 I

Chapter 1 The Microsoft SharePoint 2010 Platform 5

that uses Internet Information Services (IIS) on each server to deliver the web user interface
that is commonly associated with SharePoint. In Parts III and IV of this book, we’ll look at
a few of the additional services that are delivered via the SharePoint farm in more detail.

As well as leveraging IIS to deliver a web user interface, the SharePoint platform also
makes use of Microsoft SQL Server as its primary data store. A number of separate databases
are used to maintain data for each of the services on a farm; however, the global configuration
for the farm itself is stored in a single database. New servers must connect to this database
to be added to the farm.

User Features
This book will focus predominantly on the developer features that are available on the
SharePoint platform. To highlight how users can interact with SharePoint and therefore
with any applications that are created using the SharePoint platform, let’s take a brief look
at the key user features.

Office Integration
One of the key features of SharePoint from a user’s perspective is the tight integration
with Office applications such as Microsoft Word. This integration is even more visible in
the 2010 version of these applications. Within the options in the new backstage area, shown
next, users can easily share documents to SharePoint sites. Furthermore, when users create
a personal site on a SharePoint farm, they can automatically set the web site as the default
save location for all new documents.

6 PART I Introduction to SharePoint 2010 Development

Along with file-level integration, the SharePoint 2010 platform also provides
application-level integration. For example, by using Excel Services, a workbook that’s been
created in Excel can be published to a web site and accessed as a web page by other users,
even those who don’t have the Excel client application installed. The same is also true for
Access databases, which can be published as fully interactive web applications, and Visio
services, which allow diagrams created in Visio to be connected to business data surfaced
via the SharePoint platform.

Office Web Applications
Although not part of the standard SharePoint product, Office Web Applications can
optionally be deployed as a SharePoint farm service. The Office Web Applications product
provides web-based versions of Microsoft Office applications such as Word and Excel, so
users can experience the same editing and presentation functionality of Office client
applications without having the application installed locally.

SharePoint Workspace
One new addition to the Microsoft Office suite is the SharePoint Workspace. As mentioned,
in 2007 Microsoft acquired Groove, a peer-to-peer document collaboration tool. With
SharePoint 2010, the functionality of Groove has been integrated into the SharePoint
platform; the SharePoint Workspace product is a client-side tool that allows offline access
to data and documents stored on a SharePoint site.

Standards Compliant Web Interface
As well as the ability to deliver a comprehensive enterprise content management solution,
the web interface presented by SharePoint 2010 is compliant with the Web Content
Accessibility Guidelines 2.0 (WCAG 2.0) at level AA. The four principles of WCAG and
a few examples of the features in SharePoint that address them are listed here:

Perceivable

A number of changes in the generated makeup for the SharePoint 2010 user •
interface describe content and media and explain controls.

A new master page in SharePoint 2010 makes better use of Cascading Style Sheets •
(CSS) and presents content in the appropriate sequence.

Operable

In designing key user interface elements such as the ribbon, keyboard interaction •
has been a central aim to provide compatibility and usability.

Proper heading structures have been added to pages to provide informational, •
organizational, and navigational benefits.

Chapter 1 The Microsoft SharePoint 2010 Platform 7

P
a

rt
 I

Understandable

The SharePoint platform makes use of language packs to support multiple •
languages throughout the user interface. Using features such as variations, you
can also implement business processes that ensure that user-generated content
is also available in multiple languages.

SharePoint supports browser settings to zoom content and operating system •
features to increase font sizes.

Robust

Much of the markup produced as part of the SharePoint user interface is delivered •
as well-formed Extensible Markup Language (XML), greatly enhancing cross-
browser support. In addition, the new rich text editor, which is used to create user
content, has a function to convert its content into Extensible Hypertext Markup
Language (XHTML). This ensures that user-generated data can also be used across
browsers.

Summary
This chapter has been a gentle introduction to SharePoint. You’ve learned what SharePoint
is and where it came from and at the same time gained some understanding of how it can
be used. You’ve also looked at how SharePoint is deployed from an infrastructure perspective
as well as gained an understanding of the key user features that make SharePoint an ideal
choice for many application development projects.

With this basic foundation in place, we will move on to look at how SharePoint works
and, more importantly, how it can be leveraged for building custom applications.

This page intentionally left blank

2
CHAPTER

9

Developing with
SharePoint 2010

This book is about developing applications using SharePoint 2010. That’s a pretty broad
definition, so I’ll refine that a bit just to make it clear on where we’re going. Along with the
end-user role and the system administration role, there are two aspects to the SharePoint
development role. First, there’s the no-code, configuration-based aspect. Generally speaking,
this is manifested in the web interface and to a certain extent in the capabilities of SharePoint
Designer. Within this aspect, nontechnical users can build business applications by combining
various platform building blocks such as web parts and out-of-the-box features. For the sake
of simplicity, I’ll refer to this aspect as the “SharePoint product.”

In the second aspect, we developers dig a little deeper and determine how the underlying
platform works so that we can create our own building blocks. This allows us to extend the
functionality that’s available to nontechnical users, allowing them to create applications
that are more suited to the tasks at hand. We’ll refer to this aspect as the “SharePoint
platform.”

This book’s focus is the SharePoint platform. It’s fair to say that to use the platform
properly, we need to have some understanding of the product. As you work through this
book, you’ll pick up a good understanding of how the product works and what it can do,
but the primary focus is on the platform.

This chapter covers the key objects in the SharePoint server object model. You’ll
encounter these objects in practically all of the chapters that follow, so you don’t need to
get to know their intimate details for now. They’re covered here as a means of explaining
the core SharePoint architecture from a software development perspective.

Platform Development Tools
One of the big improvements in SharePoint 2010 is its tooling. In previous versions,
platform developers were forced to rely on home-grown or community-supported tools to
get any serious development efforts off the ground. Using Visual Studio 2010, developing
solutions that target the SharePoint platform is much easier because of a number of new
SharePoint-specific integrated development environment (IDE) tools and project
templates. As you work through this book, you’ll see most of these in action.

10 PART I Introduction to SharePoint 2010 Development

Visual Studio 2010 and SharePoint Designer 2010
In addition to Visual Studio 2010, many improvements have been added to SharePoint
Designer 2010. When it comes to doing any design work in SharePoint, SharePoint
Designer has always been the way to go. Using the combination of Visual Studio and
SharePoint Designer provides practically all the tools that we need to develop SharePoint
platform applications.

TypeMock Isolator
Having said that, there are still a few areas that aren’t addressed by the combination
of Visual Studio and SharePoint Designer. For example, when it comes to test-driven
development, isolating dependencies to test custom SharePoint code can be challenging.
Common practice would mandate the use of a mocking framework, but many of the classes
in the SharePoint object model are sealed, making them difficult to mock. To address this
particular problem, TypeMock Isolator provides a dependency isolation tool that is both
integrated with Visual Studio 2010 and able to mock SharePoint sealed classes. In effect,
we can write automated unit tests for SharePoint without actually touching the SharePoint
platform.

Red Gate .NET Reflector
The sheer complexity of the platform is another area where a third-party product can help,
and this issue will be the source of much frustration for any developer building a complex
business application on the SharePoint platform. Of course, plenty of documentation is
available to help, but there will come a time when a piece of code just doesn’t behave as
you expected.

Experienced developers will be aware of .NET Reflector, a tool that is capable of
disassembling .NET assemblies to expose their inner workings. When things don’t behave
as expected, the only way we can move forward is to disassemble the application binaries
and try to work out what’s going on. This works well, but it can be time-consuming and
difficult to track what’s going on in disassembled code. To make this process much easier,
Red Gate provides the .NET Reflector Pro product. The product runs as an add-in to Visual
Studio 2010 and allows developers to debug third-party assemblies. Or in other words, when
things don’t go according to plan, we can step in to the SharePoint assemblies and track
down exactly where the problem lies in the same ways we use to debug our own code. I
think it’s fair to say that without Reflector Pro, this book would have been much shorter!

U2U CAML Query Builder
Although I don’t use a lot of it in this book, the built-in query language of the SharePoint
platform is Collaborative Application Markup Language (CAML). It’s covered in more
detail in Part IV of the book. CAML is an XML dialect and can therefore be created using
any text editor; however, sometimes the syntax and more often the field names aren’t quite
as straightforward as they could be. To make it easier to create CAML queries, the good
people at www.u2u.be have created a free tool—the CAML Query Builder.

www.u2u.be

Chapter 2 Developing with SharePoint 2010 11

P
a

rt
 I

Sysinternals DebugView
A lot of the code we write when developing SharePoint applications runs behind the scenes.
It can be difficult to connect a debugger to the process in which much of this code runs
without causing system instability. Furthermore, when an application is deployed to a farm
environment, the problem is compounded by the fact that our code is running in more than
one server. A few solutions to this problem are possible. The SharePoint platform provides
a Unified Logging Service (ULS) that is intended to be a central source for all tracing and
logging information, and this works well when tracing information needs to be included in
context with other SharePoint-generated messages. The drawbacks to this approach are the
relative complexity of using the ULS logs and the sheer volume of data produced in the logs.
In my experience, the easiest way to debug programming errors in a complex application is
to make use of Sysinternals DebugView. By simply adding Trace.Write and Debug.Write
statements throughout our code, we can view the output at runtime using the DebugVew
user interface.

NOTE Although I use Trace.Write and Debug.Write extensively when creating SharePoint code, for the
sake of brevity these statements have been removed from the code samples in this book.

SharePoint 2010 provides a few new tools that make it much easier to troubleshoot
performance issues or debug code that runs in a user-initiated process such as a web page.

Development Server Configuration
For development purposes, SharePoint 2010 can be installed on either a 64-bit Windows 7
or Windows Vista SP1 client machine or a 64-bit Windows 2008 or Windows 2008 R2 server.

NOTE For full details on how to set up the development environment, see http://msdn.microsoft.com/
en-us/library/ee554869.aspx.

While writing this book, I used a Windows 2008 Virtual Machine running on VMware
workstation. I used the following tools:

SharePoint Server 2010 Beta 2•

Visual Studio 2010 Beta 2 & Release Candidate•

Office 2010 Beta 2•

Visio 2010 Beta 2•

SharePoint Designer 2010 Beta 2•

Red Gate .NET Reflector Pro•

TypeMock Isolator•

In Chapter 18 on Business Intelligence, I used a separate virtual machine with the same
configuration and tools, except I used SQL Server 2008 R2 November CTP to enable use of
PowerPivot.

http://msdn.microsoft.com/en-us/library/ee554869.aspx
http://msdn.microsoft.com/en-us/library/ee554869.aspx

12 PART I Introduction to SharePoint 2010 Development

Additional Development Environment Configuration
In addition to installing the software listed previously, you’ll need to take a few additional
steps to follow the examples in this book.

Defining an SPRoot Environment Variable
By performing a standard installation of SharePoint, most of the program files are installed
at C:\Program Files\Common Files\Microsoft Shared\Web Server Extensions\14\. For many
examples in the book, you need to add or edit these files. Rather than continually referencing
the full path, you can define an environment variable that can be used as a shortcut.

Take the following steps:

 1. Open a command prompt window.

 2. Enter the following command:

setx SPROOT "C:\Program Files\Microsoft Shared\Web Server Extensions\14\

NOTE The omission of quotation marks at the end of the command line is intentional.

Using Office Applications in Windows 2008 Server
Because Windows Server 2008 is not deigned to be a client operating system, some of the
integration features of products such as Word 2010 don’t work as you would expect. All
Office 2010 applications come with a new backstage area that, among other things, allows
users to publish documents easily to SharePoint document libraries. For this feature to
work correctly on Windows 2008, the Desktop Experience feature must be enabled. To
enable the Desktop Experience feature, take the following steps:

 1. Open the Server Manager application.

 2. Select the Features node, and then click the Add Features button link.

 3. In the Add Features Wizard dialog, select the Desktop Experience feature.

Debugging and Unit Testing SharePoint Applications
SharePoint 2010 is a 64-bit application. Therefore, all the code that we write that will run
within SharePoint-managed processes must also be 64-bit. This detail can cause a bit of
confusion, especially when you’re trying to debug console applications or run automated
unit tests.

To illustrate this point, suppose we have the following simple event receiver:

public class DemoEventReceiver : SPItemEventReceiver
 {
 public override void ItemAdding(SPItemEventProperties properties)
 {
 using (SPWeb web = properties.OpenWeb())
 {
 web.Title = "Some New Title";
 web.Update();

Chapter 2 Developing with SharePoint 2010 13

P
a

rt
 I

 }
 }
 }

We could create the following unit test using TypeMock Isolator:

[TestMethod()]
 public void ItemAddingTest()
 {
 DemoEventReceiver target = new DemoEventReceiver();
 SPItemEventProperties properties = Isolate.Fake.Instance<SPItemEventProperties>();
 using (SPSite site = new SPSite("http://sp2010dev2/"))
 {
 using (SPWeb web = site.RootWeb)
 {
 Isolate.WhenCalled(() => properties.OpenWeb()).WillReturn(web);
 target.ItemAdding(properties);
 Assert.AreEqual(web.Title, "Some New Title");
 }
 }
 }

When running this test within Visual Studio, a System.IO.FileNotFound exception is
thrown, suggesting that the web application could not be found.

This error is misleading; if the site URL is correct, most likely the error is being thrown
because we’re trying to use the SharePoint object model from within a 32-bit application.
Although Visual Studio supports 64-bit code, by default many projects are created in 32-bit
mode, particularly console applications, as you’ll see later. Also, the test runner within Visual
Studio runs as a 32-bit application, meaning that unit tests cannot connect to SharePoint
objects. Although you can force the test runner to use 64-bit, this uses a different test runner
that runs as a .NET 4 application; as a consequence, SharePoint is not supported, since it is
based on .NET 3.5.

All is not lost, however; when creating unit tests, it’s generally considered good practice
to isolate all dependencies, and with clever use of TypeMock, we can change our unit test as
follows:

[TestMethod()]
 public void ItemAddingTest()
 {
 DemoEventReceiver target = new DemoEventReceiver();
 SPItemEventProperties properties = Isolate.Fake.Instance<SPItemEventProperties>();
 SPWeb fakeWeb = Isolate.Fake.Instance<SPWeb>();
 Isolate.WhenCalled(() => properties.OpenWeb()).WillReturn(fakeWeb);
 target.ItemAdding(properties);
 Assert.AreEqual(fakeWeb.Title, "Some New Title");
 Isolate.Verify.WasCalledWithAnyArguments(() => fakeWeb.Update());
 }

This time, the test passes as expected, because even though our code is being fully tested,
since we’re using mocked SharePoint objects rather than real objects, the test runner can
execute our test in 32-bit mode.

14 PART I Introduction to SharePoint 2010 Development

SharePoint Fundamentals
Now that you’re up and running, you’re ready to get into some serious development.
Before we start looking at each of the functional areas in depth, let’s spend a bit of time
getting to know the fundamentals of the Server Object Model and the SharePoint product
in general.

Creating a Web Application
On the SharePoint platform, sites are provisioned on a farm according to a hierarchy.
At the top level of the hierarchy is the web application. A web application is a web site in
Internet Information Services 7 (IIS7), and web applications are automatically provisioned
on all front-end servers within a farm. SharePoint content is stored in a content database,
and when attached at the web application level, multiple content databases can exist within
a single web application.

Within a SharePoint farm, most farm level configuration is performed using a Central
Administration web site. As part of the SharePoint 2010 installation process, this web
application will be provisioned using a random port number. However, to make it easy to
find, a shortcut will be placed in the Start menu in the Microsoft SharePoint 2010 Product
folder.

 1. Click the SharePoint 2010 Central Administration link to open the Central
Administration site.

 2. From the Application
Management section, select
Manage Web Applications,
as shown here:

 3. In the Contribute section
of the Web Applications tab,
select New to create a new
web application.

 4. In the Create New Web Application dialog, select Create A New IIS Web Site and
type SP2010Dev in the Name field. Accept the defaults for all other settings, and
then click OK at the bottom of the page to create the web application.

 5. After the new web application has been created, a dialog confirming success
appears, as shown. Click OK to close the dialog.

Chapter 2 Developing with SharePoint 2010 15

P
a

rt
 I

Creating a Site Collection
The next step in the site provisioning hierarchy is the site collection. This collection of sites
exists mainly as an administrative container. Each site collection can make use of a single
content database, although more than one site collection can exist in the same content
database. As a result, each web application can contain many site collections spread across
a number of content databases. From a backup and restore perspective, the site collection
is the lowest level of granularity.

Follow these steps to create a site collection:

 1. Navigate to the home page of the Central Administration site. In the Application
Management section, select Create Site Collections.

 2. In the Web Application drop-down, ensure that the SP2010Dev web application is
selected. (This will appear as http://<servername>:<portNumber>.)

 3. Type SharePoint 2010 Demo as the title, and then select Blank Site as the site
template. Add an appropriate username in the Primary Site Collection Administrator
box. Generally, this will be the username you use to log in to the server that
provides full administrative privileges on all sites within the site collection.

 4. Click OK to complete the process. A confirmation message will be displayed when
the process has completed. Take note of the URL that is displayed for our new site
collection, because you’ll need it in the next example.

Although we’ve set out to create a site collection, we’ve also selected a site template and
named our web site. Each site collection must have at least one root site; when we’re creating
a new site collection, we must also specify the details for this site. In some situations, however,
the details of the root site are unknown; in such situations, you can create a site collection
and allow the type of root site to be determined when the first administrative user connects.
To achieve this, select the Select Template Later option in the Custom tab of the Template
Selection section, as shown here:

Creating a Site
The final item in the provisioning hierarchy is the site. When creating a site collection, one
or more sites are automatically provisioned. Each site collection must have a root site, but
you can add more sites to a site collection if they are required. Furthermore, sites can also
contain child sites.

Although the site collection is the lowest level of granularity in terms of backup and
restore functionality, you can import or export an individual site. While import/export

New in

2010

http://<servername>:<portNumber

16 PART I Introduction to SharePoint 2010 Development

appears to achieve the same results as backup/restore, there are differences between these
options, and backup/restore is the recommended approach when it comes to handling a
significant volume of data.

Although we use the Central Administration web site to create web applications and
site collections, creating web sites is performed from the root site of a site collection or via
SharePoint Designer. We’ll see the SharePoint Designer method in various examples in
this book; for now, we’ll use the root site method.

 1. Connect to the URL of the site collection that we created earlier.

 2. In the upper-left corner of the page, click the Site Actions menu, and then select
New Site:

 3. The Create dialog displays a number of different templates from which we can
choose when creating our new site. For the purposes of our demonstration, select
Team Site and type the Title as Team Site and the URL as TeamSite, as shown:

Chapter 2 Developing with SharePoint 2010 17

P
a

rt
 I

 4. Click the Create button to provision the new site.

Our new site is created as a child of our site collection root site. We can add more child
sites to our team site, allowing us to build a hierarchy of sites all contained within the same
site collection. Next to the Site Actions button is a folder icon, and by clicking this we can
view a navigation control that shows where we are within our site collection:

Server Object Model
Many years ago, back when software shipped with printed manuals, I occasionally dabbled
in a bit of development with Microsoft Access 2.0. Although the developers’ manual that
Microsoft provided with Access covered the ins and outs of the product in great detail, the
thing that I found most useful was the pseudo-class diagram that was printed on the back

18 PART I Introduction to SharePoint 2010 Development

cover. In my opinion, there’s no easier way to find your way around a new object model.
Bearing that in mind, the following illustration is my SharePoint 2010 hierarchy. Of course,
the actual object model is far more complicated, but as a tool, this will help you get up to
speed quickly.

We’ll work through the objects on the diagram to build an understanding of what each
one represents and how you might use it in development. We’ll use a console project to
execute our code samples. Take the following steps:

 1. In Visual Studio 2010, choose File | New | Project.

 2. In the New Project dialog, select Console Application. Name the new project Chapter2,
as shown. Ensure that the framework is set to .NET Framework 3.5. Click OK.

Chapter 2 Developing with SharePoint 2010 19

P
a

rt
 I

 Earlier I discussed the problems that can arise when debugging and unit testing
SharePoint applications due to the 64-bit nature of the SharePoint platform. Console
Application projects are created with a default build configuration of x86, meaning
that they will be built as 32-bit assemblies. Since these will not work when targeting
SharePoint, we need to change the default build configuration.

 3. In the Solution Configuration drop-down, select Configuration Manager, as
shown next:

20 PART I Introduction to SharePoint 2010 Development

 4. From the Active Solution Platform drop-down, select <New..>, and then in the New
Solution Platform dialog, select x64 as the new platform, as shown:

 5. Close the Configuration Manager dialog to return to the project.

 6. Add a reference to Microsoft.SharePoint by choosing Project | Add Reference, and
then select Microsoft.SharePoint from the .NET tab.

Administration and Configuration Classes
The following classes are generally used for administration and configuration purposes.
Many of these are commonly used when implementing service applications, and you’ll see
this usage in more detail in Chapter 9.

SPFarm
It will probably come as no surprise to learn that the SPFarm object represents the
SharePoint farm. Server Object Model code must be executed on a server that is a member
of a SharePoint farm (or on a single stand-alone server, which is effectively a farm with only
one server in it), and because of this we can obtain a reference to the SPFarm object that
represents the current farm by using code such as this:

class Program
 {
 static void Main(string[] args)
 {
 Program p = new Program();
 p.ListServersInFarm();
 Console.WriteLine("Press enter to exit...");
 Console.ReadLine();
 }

Chapter 2 Developing with SharePoint 2010 21

P
a

rt
 I

 void ListServersInFarm()
 {
 Console.WriteLine("Servers in farm:");
 foreach (SPServer server in SPFarm.Local.Servers)
 {
 Console.WriteLine(server.DisplayName);
 }
 }
 }

SPServer
The SPServer object represents a specific server within a SharePoint farm. Again, since all
Server Object Model code must run on a server within a SharePoint farm, we can pick up a
reference to the current SPServer object as follows:

 void ListServicesOnServer()
 {
 Console.WriteLine("Services on local server");
 foreach (SPServiceInstance service in SPServer.Local.ServiceInstances)
 {
 Console.WriteLine(service.TypeName);
 }
 }

SPService
At its most fundamental, SharePoint is a platform for running services across a farm of
servers. These services can include features such as Web Services, which use IIS to provide
web-based content, or Search Services, which provides search functionality to other services
within the farm. As you’ll learn throughout this book, SharePoint Server 2010 provides
many services out of the box. Within the object model, each of these services is represented
by an object that derives from the SPService class.

SPServiceInstance
Since a SharePoint farm may have many servers, each platform server may have more
than one instance. The SPServiceInstance object represents an instance of a service that
is running on a particular server.

SPWebService
The SPWebService is the parent service that hosts all front-end web sites within a
SharePoint farm.

Site Provisioning and Content Access Classes
The following classes are used for programmatically provisioning sites as well as for
accessing data contained within sites, lists, and libraries. These classes will be commonly
used in all SharePoint development.

22 PART I Introduction to SharePoint 2010 Development

SPWebApplication
As you saw earlier when we walked through the creation of a SharePoint site, the web
application is the topmost object in the site provisioning hierarchy. Each web application
that’s configured on a SharePoint farm is represented by an SPWebApplication object in
the Server Object Model:

void ListWebApplications()
 {
 Console.WriteLine("Web applications in farm:");
 SPWebService webService = SPFarm.Local.Services.
 OfType<SPWebService>().First();
 foreach (SPWebApplication app in webService.WebApplications)
 {
 Console.WriteLine(app.Name);
 }
 }

SPSite
This is where it gets confusing! The next level in the site provisioning hierarchy is the site
collection. However, within the SharePoint Object Model, each site collection is
represented by an SPSite object. The SPSite object is one of the primary entry points to the
Server Object Model and will be used frequently in SharePoint application development.

The following code snippet shows how to create an SPSite object explicitly. Notice that
the SPSite object is defined within a using block; for reasons discussed later in this chapter,
this is recommended practice whenever an SPSite object is created.

void ListSitesInSiteCollection()
 {
 Console.WriteLine("Sites in site collection:");
 using (SPSite site = new SPSite("YourSiteCollectionURL"))
 {
 foreach (SPWeb web in site.AllWebs)
 {
 Console.WriteLine(web.Title);
 web.Dispose();
 }
 }
 }

SPWeb
Continuing with the theme of confusion, within the model, sites are represented by SPWeb
objects. Although SPSite objects are the primary entry point to the model, picking up
references to objects that we’ll likely be writing code against will require a reference to an
SPWeb object. The following code snippet shows how to obtain a reference to the root site
in a site collection:

void ListListsInRootWeb()
 {
 Console.WriteLine("Lists in site collection root site:");
 using (SPSite site = new SPSite("YourSiteCollectionURL "))
 {

Chapter 2 Developing with SharePoint 2010 23

P
a

rt
 I

 using (SPWeb root = site.RootWeb)
 {
 foreach (SPList list in root.Lists)
 {
 Console.WriteLine(list.Title);
 }
 }
 }
 }

As well as explicitly creating SPWeb objects, references to the current SPWeb object can
often be obtained from other sources. For example, when you’re writing code that runs in
the context of a web page, the static SPContext.Current property provides a reference to
the current SPWeb object, as this code snippet shows:

SPList list = SPContext.Current.Web.Lists.TryGetList(ListName);
if (list == null)
{
 //do stuff
}

We’ll explore retrieving SPWeb objects in this manner in some of the examples in this
book.

SPList
Most SharePoint content is stored within lists or document libraries. Within the Server Object
Model, both lists and document libraries are represented by an SPList object. Although not
included in our diagram, document libraries are also represented by SPDocumentLibrary
objects. The SPDocumentLibrary class is derived from the SPList class and provides additional
functionality that is appropriate for document libraries. Other classes are derived from SPList
and represent specific types of list; for more information, see http://msdn.microsoft.com/
en-us/library/microsoft.sharepoint.splist.aspx.

SPListItem
As mentioned, most content within a SharePoint site is accessed via an SPList object. Each
item in a list or library is in turn represented by an SPListItem object that is accessed via the
SPList.Items collection. The SPList class and the SPListItem class will feature heavily in
practically all development on the SharePoint platform. As you’ll see in Chapter 4, these
objects also have implementations within the Client Object Model.

SPFile
Although almost all content is represented by an SPListItem object, where the content
in question is a file, the SPListItem object only represents the metadata for the file. For
example, if we create a document library and upload a Word document, the SPListItem
object that represents the document will contain only the document title as well as a few
additional system-generated metadata fields. To perform work on the document, we need
to use an SPFile object as shown next.

http://msdn.microsoft.com/en-us/library/microsoft.sharepoint.splist.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sharepoint.splist.aspx

24 PART I Introduction to SharePoint 2010 Development

void ListRootWebMasterPages()
 {
 Console.WriteLine("Master Page files in site collection root site:");
 using (SPSite site = new SPSite("YourSiteCollectionURL"))
 {
 using (SPWeb root = site.RootWeb)
 {
 SPList masterPages = root.Lists.TryGetList("Master Page Gallery");
 if (masterPages != null)
 {
 SPListItemCollection items = masterPages.Items;
 foreach (SPListItem fileItem in items)
 {
 SPFile file = fileItem.File;
 Console.WriteLine(file.Name + "\t" + string.Format("{0:###,###
bytes}",file.Length));
 }
 }
 }
 }
 }

SPFolder
Most user-generated content within SharePoint sites is stored in lists and document
libraries, and these document libraries can also contain folders that operate in the same
way as folders in the file system. As well as folders that are used for organizing user content,
other folders contain files that are used by the SharePoint platform itself. These files often
contain configuration files for platform elements such as content types.

The following code snippet shows how to enumerate folders within a SharePoint site.
Folders used for organizational purposes have an attached DocumentLibrary object,
whereas system folders do not.

void ListRootWebFolders()
{
 Console.WriteLine("Files in site collection root site:");
 using (SPSite site = new SPSite("YourSiteCollectionURL"))
 {
 using (SPWeb root = site.RootWeb)
 {
 listFolders(root.Folders);
 }
 }
}
void listFolders(SPFolderCollection folders)
{
 foreach (SPFolder folder in folders)
 {
 Console.Write(folder.Name + "\t");
 if (folder.DocumentLibrary != null)
 {
 Console.WriteLine("Corresponding library: " + folder.DocumentLibrary.Title);
 }
 else

Chapter 2 Developing with SharePoint 2010 25

P
a

rt
 I

 {
 Console.WriteLine(string.Empty);
 }
 listFolders(folder.SubFolders);
 }
}

Saving Changes Using the Server Object Model
Behind the scenes, SharePoint, like many enterprise applications, stores all data within a
database. Many of the objects that we’ve seen are actually an in-memory copy of the state of
a particular component, and as a result, changing properties on the object affects only the
in-memory copy and not the underlying database. To commit object changes to the database,
the Update method should be called, as this snippet shows:

void UpdateDescription()
 {
 Console.WriteLine("Lists in site collection root site:");
 using (SPSite site = new SPSite("YourSiteColectionURL"))
 {
 using (SPWeb root = site.RootWeb)
 {
 root.Description = "My New Description";
 root.Update();
 }
 }
 }

Best Practice Guidelines
We’ve covered most of the commonly used objects in the Server Object Model. However,
you should bear in mind a few caveats when using these objects. You’ll see these practices in
most of the examples in this book, so there’s no need to dig too deeply into this stuff right
now. This section provides a bit of background on the most significant coding practices that
you should adopt when working with the SharePoint platform.

IDisposable
Probably the most important thing to remember is that some of the objects that we’ve
covered here implement the IDisposable interface, as you can see from the hierarchical
diagram shown earlier. There is a very good reason for the objects to implement this interface
specifically: these objects hold a reference to an SPRequest object, which in turn holds a
reference to a COM component. The SharePoint platform uses the COM component to
communicate with SQL Server. By implementing IDisposable, these objects can explicitly
close the connection to the database and properly clean up the COM component when the
.NET Framework objects are no longer required.

So what can we do to ensure that objects are disposed of properly? As a general rule,
best practice is to wrap all IDisposable objects in a using block; you can see this technique
used in the earlier examples. However, there are exceptions to this rule. On many occasions,

26 PART I Introduction to SharePoint 2010 Development

IDisposable objects are passed into a function or are otherwise automatically created by
the SharePoint platform. For example, the following code samples use a reference to an
IDisposable object that was created by the platform:

 private void UseSPContext(string myList)
 {
 SPList list = SPContext.Current.Web.Lists.TryGetList(myList);
 if (list == null)
 {
 //Do Something
 }
 }

When creating event handlers (covered in Chapter 8), the properties parameter
contains a reference to the SPWeb object that has raised the event:

 public override void ItemUpdating(SPItemEventProperties properties)
 {
 string title = properties.Web.Title;
 }

For situations in which the IDisposable object is created elsewhere, it is not appropriate
to dispose of it explicitly since this could cause problems elsewhere.

Performance
A few common coding practices can lead to performance problems when you’re developing
SharePoint applications. In addition to the IDisposable issues, which are by far the most
common, most other problems relate to the proper use of data access.

You’ve seen how the SPList and SPListItem classes can be used to retrieve and represent
data from a SharePoint content database. However, the SPListItem object is relatively
heavyweight and as a result, if we retrieve the contents of a list that contains many items,
the resource implications are significant. As you’ll see later in this book, the SharePoint
platform incorporates throttling to ensure that such resource usage can be managed from
an administrative perspective. However, best practice mandates that when retrieving data
from a list, we should be specific about how much data we need.

The following code sample shows how we can use the SPQuery object to restrict the
number of rows returned and then page through the items in a list. As you’ll see in Part IV,
we can also make use of a CAML query to restrict even further the size of the dataset
returned to include specific fields only or rows that meet specific criteria.

SPQuery query = new SPQuery();
query.RowLimit = 20;
do
{
 SPListItemCollection items = myList.GetItems(query);
 //Use the items
 query.ListItemCollectionPosition = items.ListItemCollectionPosition;
} while (query.ListItemCollectionPosition != null);

Chapter 2 Developing with SharePoint 2010 27

P
a

rt
 I

Another common coding pattern that can cause performance issues is demonstrated in
this code snippet:

SPList masterPages = root.Lists.TryGetList("Master Page Gallery");
if (masterPages != null)
 {
 foreach (SPListItem fileItem in masterPages.Items)
 {
 SPFile file = fileItem.File;
 Console.WriteLine(file.Name);
 }
}

Although this code works properly and would probably be our first choice when iterating
through a collection of list items, behind the scenes, the implementation to the SPList
object makes this a common cause of performance problems. Each time the Items collection
is referenced, the underlying SPWeb object makes a call to the SQL database to retrieve the
list of items. So if we imagine a list with 2000 items, iterating through the list using this code
would generate 2000 database calls with each one returning 2000 rows. If a few users were
performing the same actions at the same time, you can see how this quickly would become
a major performance drain.

Thankfully, the problem is easy to fix:

SPList masterPages = root.Lists.TryGetList("Master Page Gallery");
if (masterPages != null)
 {
 SPListItemCollection items = masterPages.Items;
 foreach (SPListItem fileItem in items)
 {
 SPFile file = fileItem.File;
 Console.WriteLine(file.Name);
 }
}

By assigning the Items property to a SPListItemCollection variable and then using that
as the target of our iteration, we’re generating only a single database query when the
SPListItemCollection is assigned.

Error Handling
In the examples in this book, I’ve left error handling and boundary checking code out for
the sake of brevity. Of course, in real-world code, we’d add these things and create suitable
unit tests to validate their functionality. To make it possible for us to filter SharePoint specific
errors in try/catch blocks, all SharePoint exceptions are derived from the SPException class.

Earlier we looked at Sysinternals DebugView as a tool to assist in debugging problems in
server-side code. Although we could use this as an error logging tool, SharePoint provides a

28 PART I Introduction to SharePoint 2010 Development

better way to achieve the same result. Using code similar to the following sample, we can
write error logging entries to the SharePoint Unified Logging Service (ULS) logs:

try
 {
 //some code
 }
 catch (Exception ex)
 {
 SPDiagnosticsCategory myCat=new SPDiagnosticsCategory("A new category",
 TraceSeverity.Monitorable,
 EventSeverity.Error);
 SPDiagnosticsService.Local.WriteEvent(1, myCat,
 EventSeverity.Error,
 "My custom message",
 ex.StackTrace);
 }

Developer Toolbar
A new addition to SharePoint 2010 is the Developer Toolbar. The easiest way to understand
what the Developer Toolbar does is to see it in action. At the time of writing, the only way to
activate the Developer Dashboard is via PowerShell or the STSADM tool. Since STSADM is
being phased out as a mechanism for managing SharePoint, we’ll use the PowerShell method:

 1. From the Start menu, choose SharePoint 2010 Management Shell from the
Microsoft SharePoint 2010 Products menu.

 2. Type the following PowerShell commands at the prompt:
$dash = [Microsoft.SharePoint.Administration.
SPWebService]::ContentService.DeveloperDashboardSettings;
$dash.DisplayLevel = 'OnDemand';
$dash.TraceEnabled = $true;
$dash.Update()

 Using this script, we’re setting the Developer Dashboard to OnDemand mode;
other possible options are On and Off.

 3. Now if we navigate to the demo site that we created earlier, we can see that a new
icon has appeared in the upper-right corner, as shown next. Clicking this icon
enables or disables the Developer Dashboard.

Click this icon to
enable or disable
the Developer
Dashboard.

With the Developer Dashboard enabled, you can see that every page now has additional
information appended to the bottom, as shown. You can use this information to track
errors that have occurred during page processing as well as resource usage and other
important metrics.

New in

2010

Chapter 2 Developing with SharePoint 2010 29

P
a

rt
 I

Another important feature of the Developer Dashboard is that it allows developers
to write custom tracing information to it. Although I mentioned that DebugView is an
important tool for debugging complex applications, when it comes to debugging and
diagnosing problems at the user-interface level, the Developer Dashboard provides much
more information and is therefore a better solution. Where DebugView proves useful is in
debugging issues that don’t occur in the user interface—for example, issues in workflows
or asynchronous event handlers (more on these in later chapters).

Monitoring information from code that is wrapped within a SPMonitoredScope object,
as shown, is written to the ULS logs as well as being visible from the Developer Dashboard.
As a result, using SPMonitoredScope is a good way to generate tracing information that can
be used by administrators to troubleshoot problems on a production system.

 using (new SPMonitoredScope("My monitored scope"))
 {
 //Code to be monitored
 }

Sandboxed Solutions
One of the most common causes of system instability in SharePoint farms is custom code.
As you’ve seen in a few of the examples in this chapter, it’s pretty easy to make coding
errors that can quickly destroy the performance of a server. To provide administrators with
more control over the custom code that runs on a farm, SharePoint 2010 introduces the
concept of a sandboxed solution. As the name suggests, a sandboxed solution is a custom
code solution that runs in an isolated sandbox. From an administrative perspective, a
number of configurable options are available for sandboxed solutions, such as specifying
resource quotas and monitoring performance. These options are beyond the scope of
this book, but, from our perspective as developers, we need to know a few things about
sandboxed solutions.

Sandboxed solutions run in a separate process, whereas other types of solutions run
directly within the appropriate SharePoint process. In addition to running in a separate
process, sandboxed solutions can utilize only a subset of the SharePoint Object Model. A
custom code access security (CAS) policy is applied to prevent sandboxed code from
performing actions that could jeopardize system stability.

New in

2010

30 PART I Introduction to SharePoint 2010 Development

As you’ll see in the examples throughout this book, when you’re creating a new SharePoint
project using Visual Studio, you’ll see an option to select a sandboxed solution or a farm
solution. Bearing in mind that sandboxed solutions have access only to a subset of the
SharePoint API, when you deploy as a sandboxed solution option, Visual Studio IntelliSense
displays assistance only for objects and members that are available. Having said that, there is
a catch: although IntelliSense doesn’t provide assistance for inaccessible members, it is still
possible to write code using them. Such code will compile and deploy fine but will throw an
error at runtime.

Debugging Sandboxed Solutions
As mentioned, sandboxed solutions run under a separate process. To debug such solutions,
you need to connect to the SPUCWorkerProcess.exe process manually using the Debug |
Attach to Process option in Visual Studio.

Managing Sandboxed Solutions
Sandboxed solutions are managed from the Solutions Gallery, which is maintained at the
site collection level. To access the Solutions Gallery from any site, take the following steps:

 1. From the Site Actions menu, select Site Settings.

 2. On the Site Settings page, if it’s available, select Go To Top Level Site Settings.

 3. Click the Solutions link in the Galleries section.

Summary
This chapter laid a lot of the groundwork for a more in-depth exploration of the SharePoint
development platform. As you work through the samples in this book, we’ll make use of the
techniques and tools that have been briefly described here. Above all else, you should
remember two important points in this chapter:

An SPSite object represents a site collection, and an SPWeb object represents a site.•

Always dispose of SPSite and SPWeb objects properly. If you created it, you need to •
explicitly dispose of it.

Presentation Layer

PART

II
CHAPTER 3
Presentation Layer Overview

CHAPTER 4
Client Object Model

CHAPTER 5
InfoPath Forms Services

CHAPTER 6
Enterprise Content
Management

CHAPTER 7
User Interface
Customization

This page intentionally left blank

3
CHAPTER

33

Presentation Layer
Overview

When it comes to software development, it’s often the user’s experience that makes or breaks
an application. The SharePoint platform allows both business and technical users to build
bespoke business applications using a range of tools, from Visual Studio, to the web browser.
To enable this degree of flexibility, the SharePoint platform offers a highly configurable user
interface—from standard ASP.NET development techniques such as master pages and web
parts, to more advanced techniques such as page templates, delegate controls, and the rich-
client flexibility provided by the Client Object Model.

We’ll take a look at all of these technologies in detail. You’ll see how and when each
should be used to deliver the desired results. This chapter starts by taking a look at the
main elements of the SharePoint 2010 user interface. You’ll learn how pages are
constructed and the different types of pages that are delivered using the SharePoint
platform before we move on to examine the architecture of the new ribbon interface.

Page Types
The SharePoint presentation layer is delivered using a virtual path provider that forwards
requests to the SharePoint server object model for processing. As part of the processing
pipeline, content is either retrieved from an appropriate database or loaded from disk.
Often, the final output is a combination of the two. Bearing this processing model in mind,
we can broadly group the content delivered by the SharePoint presentation layer into two
groups: application pages and site pages.

Application Pages
Application pages are loaded from disk and usually provide common user interface
functionality such as site administration and configuration tools. Application pages can
be found in the file system at %SPRoot%\Template\Layouts. To facilitate the sharing
of application pages among sites, this folder is mounted on every web site as http://
<web site url>/_layouts.

http://<websiteurl>/_layouts
http://<websiteurl>/_layouts

34 PART II Presentation Layer

Site Pages
Site pages are often loaded from a content database and include all other pages that are
not included in the application pages group. All user-generated content is delivered using
site pages. Although site pages are often loaded from a content database, when sites are
created from a site definition or pages are added to a site by feature activation, the default
version of the page is usually loaded from the file system. A common example of this is the
default master page that is provisioned for each site. In reality, this page exists in the file
system as v4.master, but the provisioning process mounts the file as default.master in the
master pages gallery for each site.

Within the site pages group are a few types of site pages: web part pages, standard
pages, master pages, and page templates.

Web Part Pages
The functionality and user interface delivered via web part pages predominantly comprise
web part zones that users can populate with web parts. A web part is a server control that
users can add to a web part page using a browser-based interface. Web parts allow users to
customize and configure a page without having to resort to developer tools such as Visual
Studio. We’ll look at web parts in more detail in Chapter 7.

Keep in mind that although site pages are loaded from a database, web parts and their
user interfaces are not. Only the configuration of the web part is stored in the database.
Commonly, a web part is installed on each web server and is loaded in much the same way
as any server control. Much of the user interface functionality of the SharePoint platform
is implemented via web parts, and as a result, most of the pages that are provided out of the
box fall into the web part page category.

Standard Pages
All other types of web pages delivered by the SharePoint platform can be considered
standard pages. For all intents and purposes, a standard page is equivalent to a page that
could be created using any web design tool. Commonly, standard pages use SharePoint
master pages to include common user interface elements such as navigation, but this is not
a requirement. We’ll look at how pages are constructed in more detail in Chapters 6 and 7.

Master Pages
We’ll look at master pages in more depth in Chapter 7. Essentially, the master pages that
are used by SharePoint 2010 are the same as any other ASP.NET master pages—except to
support some of the built-in functionality, SharePoint master pages must include a number
of specific placeholders.

Page Templates
Page templates are an essential part of the Enterprise Content Management (ECM)
functionality of SharePoint 2010. You construct content pages by using a page template
to define the positioning and presentation of data that is retrieved from individual fields
in a document library. We’ll look at this in more detail in Chapter 6.

Chapter 3 Presentation Layer Overview 35

P
a

rt
 I

I

Ghosting/Unghosting
As you’ve seen, two main page types are featured in SharePoint: application pages that are
rendered from the file system, and content pages that are usually rendered from the database.
However, pages are often rendered using a number of additional files such as master pages
or page templates. Some of these components, while mounted in document libraries, are
actually being loaded from the local file system.

When changes are made to these files using SharePoint Designer, the changed page
content is stored within the content database. As a result, all future renderings of the page
will be retrieved from the content database. Site pages that are loaded from the file system
are known as ghosted pages, and when these pages have been customized they are known as
unghosted pages.

With each new version of SharePoint comes another set of terms for this phenomenon.
SharePoint 2003 brought us ghosting/unghosting; SharePoint 2007 scrapped these terms in
favor of the more descriptive uncustomized/customized. Now with SharePoint 2010, the terms
attached and detached are used to prevent any ambiguity. In most SharePoint documentation,
the terms ghosted/unghosted are still in use, however.

In SharePoint 2010, a few new tools enable administrators and developers to better
manage ghosted/unghosted pages. When editing pages, SharePoint Designer now loads
the page content in safe mode by default. In this mode, parts of the page that are loaded
from the file system are highlighted and can’t be edited. To make changes to these regions,
you must work in Advanced mode. You’ll see this in action in the various samples throughout
this book. From an administrative point of view, it is now possible to disable the ability for
users to enter Advanced mode in SharePoint Designer and therefore prevent pages from
being unghosted.

Executing Server-Side Code
Another difference between site pages and application pages is the way they are parsed by
the SharePoint platform. Application pages behave like any other ASP.NET page in that
they can contain inline server-side code; however, site pages are rendered using the safe
mode parser that prevents inline server-side code from executing. This makes sense when
you think about it, because site pages are commonly user-generated, and allowing inline
server-side code to execute would present a major system stability risk.

If this were the whole story, SharePoint would be somewhat limited as a development
platform. Of course, functionality can be implemented in the form of web parts, and although
this is commonly the best approach, in some situations it’s vital to be able to handle the
various events within the ASP.NET page rendering process—for example, when you want
to change the master page dynamically.

Two solutions are possible to this problem: the first solution, which is recommended
only in exceptional circumstances, is to add a PageParserPath entry to the web.config file,
like this:

<SharePoint>
 <SafeMode ...>
 <PageParserPaths>

36 PART II Presentation Layer

 <PageParserPath VirtualPath="/myFiles/*" CompilationMode="Always"
 AllowServerSideScript="true" IncludeSubFolders="true"/>

 </PageParserPaths>

Be careful when you’re adopting this approach, because it effectively allows users to
execute arbitrary code on the server.

A better approach is to create a code-behind class and deploy it to the farm. You can
then change the Page directive for any page to refer to the code-behind file, as shown:

<%@ Page language="C#" MasterPageFile="~masterurl/default.master"
 Inherits="MyAssembly.MyClass,MyAssembly" %>

 1. Using SharePoint Designer, create a new blank site at the URL http://<Your server
name>/Chapter3.

 2. From the Site tab, select Document Library | Document Library. Name the new
library MyCustomPages.

 3. Using Visual Studio, choose File | New | Project. Then select Empty SharePoint
Project from the New Project dialog, as shown. Name the project Chapter3.

 4. Set the site to use for debugging to the blank site that we set up in step 1. Select the
Deploy As Farm Solution option.

 5. After the project has been created, choose Project | Add New Item. Add a new
Module named MyCustomPages, as shown:

Chapter 3 Presentation Layer Overview 37

P
a

rt
 I

I

TIP Modules can be used to deploy files to SharePoint. This is covered in more detail in Chapter 19.

 6. At the time of writing, no template is available for creating site pages with code-
behind, and when using a SharePoint project, standard ASP.NET pages are not
available in the Add New Item dialog. To get around this limitation, we’ll add an
application page and then modify it to suit our needs. Choose Project | Add New
Item. Select Application Page and name the file MyCustomPage.aspx, as shown:

38 PART II Presentation Layer

 7. Since application pages are always located in the Layouts folder, Visual Studio has
automatically created a mapping to the SharePoint Layouts folder and added our
new page to a subfolder named Chapter3. Because we’re creating a site page rather
than an application page, drag the MyCustomPage.aspx file into the MyCustomPages
folder, and then delete the Layouts folder since it’s no longer required.

 8. In the MyCustomPage.aspx file, add the following markup:

<%@ Assembly Name="$SharePoint.Project.AssemblyFullName$" %>
<%@ Import Namespace="Microsoft.SharePoint.ApplicationPages" %>
<%@ Register TagPrefix="SharePoint"
 Namespace="Microsoft.SharePoint.WebControls"
 Assembly="Microsoft.SharePoint, Version=14.0.0.0, Culture=neutral,
PublicKeyToken=71e9bce111e9429c" %>
<%@ Register TagPrefix="WebPartPages"
 Namespace="Microsoft.SharePoint.WebPartPages"
 Assembly="Microsoft.SharePoint, Version=14.0.0.0, Culture=neutral,
PublicKey Token=71e9bce111e9429c" %>
<%@ Register TagPrefix="Utilities"
 Namespace="Microsoft.SharePoint.Utilities"
 Assembly="Microsoft.SharePoint, Version=14.0.0.0, Culture=neutral,
PublicKeyToken=71e9bce111e9429c" %>
<%@ Register TagPrefix="asp" Namespace="System.Web.UI"
 Assembly="System.Web.Extensions, Version=3.5.0.0, Culture=neutral,
PublicKeyToken=31bf3856ad364e35" %>
<%@ Import Namespace="Microsoft.SharePoint" %>
<%@ Assembly Name="Microsoft.Web.CommandUI, Version=14.0.0.0, Culture=neutral,
PublicKeyToken=71e9bce111e9429c" %>
<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="MyCustomPage.aspx.cs" Inherits="Chapter3.MyCustomPage"
 MasterPageFile="~masterurl/default.master" %>
<asp:Content ID="PageHead"
 ContentPlaceHolderID="PlaceHolderAdditionalPageHead"
 runat="server">
</asp:Content>
<asp:Content ID="Main" ContentPlaceHolderID="PlaceHolderMain"
 runat="server">
 <asp:TextBox ID="TitleText" runat="server"/>
<asp:Button ID="Button1" runat="server" Text="Change Title" OnClick="Button1_OnClick"/>
 <table width="100%" cellpadding="0" cellspacing="0"
 style="padding: 5px 10px 10px 10px;">
 <tr>
 <td valign="top" width="70%">
 <WebPartPages:WebPartZone runat="server"
 FrameType="TitleBarOnly" ID="Left" Title="loc:Left">
 <ZoneTemplate>
 </ZoneTemplate>
 </WebPartPages:WebPartZone>

 </td>
 <td>

 </td>
 <td valign="top" width="30%">

Chapter 3 Presentation Layer Overview 39

P
a

rt
 I

I

 <WebPartPages:WebPartZone runat="server"
 FrameType="TitleBarOnly" ID="Right" Title="loc:Right">
 <ZoneTemplate>
 </ZoneTemplate>
 </WebPartPages:WebPartZone>

 </td>
 <td>

 </td>
 </tr>
 </table>
</asp:Content>
<asp:Content ID="PageTitle" ContentPlaceHolderID="PlaceHolderPageTitle"
 runat="server">
 My Custom Page
</asp:Content>
<asp:Content ID="PageTitleInTitleArea"
 ContentPlaceHolderID="PlaceHolderPageTitleInTitleArea"
 runat="server">
 <asp:Label ID="MyLabel" runat="server" Text=""></asp:Label>
</asp:Content>

 9. In the MyCustomPage.aspx.cs file, add the following code:

using System;
using Microsoft.SharePoint;
using Microsoft.SharePoint.WebControls;
using Microsoft.SharePoint.WebPartPages;
namespace Chapter3
{
 public partial class MyCustomPage : WebPartPage
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 MyLabel.Text = “Hello World";
 }

 protected void Button1_OnClick(object sender, EventArgs args)
 {
 MyLabel.Text = TitleText.Text;
 }
 }
}

 10. Since we’re deploying our page to a document library, we need to make a few
modifications to the Elements.xml file in the MyCustomPages folder. Change the
XML as follows:

<?xml version="1.0" encoding="utf-8"?>
<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
 <Module Name="MyCustomPages" Url="MyCustomPages">
 <File Path="MyCustomPages\MyCustomPage.aspx" Url="MyCustomPage.aspx"
 Type="GhostableInLibrary" />
 </Module>
</Elements>

40 PART II Presentation Layer

 11. We can now build and deploy the project to SharePoint. Choose Build | Deploy.

 12. Using the browser, navigate to http://<your server url>/Chapter3/
MyCustomPages/MyCustomPage.aspx to see the results:

 13. Click the Change Title button to modify the title that’s displayed on the page,
confirming that our code-behind works as expected.

If we select Edit Page from the Page tab, we’ll also be able to add web parts to our page.
In fact, reviewing the options available on the Page tab, we can see that our custom page
effectively behaves in the same way as any other site page, allowing us to set permissions or
execute workflows.

Mobile Pages
The ability to render appropriately formatted content for mobile devices is one of the
significant improvements in SharePoint 2010. With SharePoint 2007, mobile device users
could access mobile versions of a site by appending /_m/ to the page URL. For example,
http://mysite/mylist becomes http://mysite/mylist/_m/. With SharePoint 2010, this
manual modification of URLs is no longer necessary. Instead, a custom HttpModule
component, SPRequestModule, picks up all requests and redirects mobile browsers
automatically to an appropriate version of a page. From a development perspective,
not much work is involved in providing content for mobile devices.

NOTE While it is possible to implement custom mobile pages, such development is specialist in nature
and in-depth coverage is not provided in this chapter. For information on mobile pages, see http://
msdn.microsoft.com/en-us/library/ms462572.aspx.

Ribbon
With SharePoint 2010, the biggest single change from a user interface perspective is the
introduction of the ribbon. With previous versions, controls and menus were spread
between a few components. For example, the ListViewWebPart, which was commonly used
to display list data, included its own menu system. However, when it came to managing
publishing pages, a separate page editing toolbar was used. With SharePoint 2010, both of
these features are delivered via the ribbon, providing a continuity of user experience between
SharePoint and other Microsoft Office products.

Ribbon Architecture
To set the stage for further discussion on how the ribbon can be customized, let’s take a
look at the underlying architecture and the elements that are involved.

New in

2010

New in

2010

http://msdn.microsoft.com/en-us/library/ms462572.aspx
http://msdn.microsoft.com/en-us/library/ms462572.aspx
http://<yourserverurl>/Chapter3/MyCustomPages/MyCustomPage.aspx
http://<yourserverurl>/Chapter3/MyCustomPages/MyCustomPage.aspx
http://mysite/mylist
http://mysite/mylist/_m/

Chapter 3 Presentation Layer Overview 41

P
a

rt
 I

I

For the most part, the ribbon is defined using XML with client functionality being
provided via JavaScript. Most of the functionality for the ribbon as it operates out of the box
can be found in a number of files: the client-side script is contained in the file %SPROOT%\
TEMPLATE\LAYOUTS\CUI.js, with the majority of the configuration being found in
%SPROOT%\TEMPLATE\GLOBAL\XML\CMDUI.XML. An examination of the configuration
file reveals the key elements that make up the ribbon:

Group Control

Contextual groupTab

Tabs
The ribbon uses tabs to show or hide groups of controls. Tabs generally refer to a particular
functional area, and their visibility can be programmatically toggled so as to reduce the
number of irrelevant options presented to users. Visibility can only be toggled for tabs;
you can’t hide an individual control or group of controls within a tab. This is a key design
element of the ribbon because it helps to reduce user confusion by ensuring that the same
controls always appear in the same place.

Groups
Each tab can contain many controls. So that these controls can be further grouped into
logical categories, individual controls must exist within a group.

Templates
Groups make use of templates to determine the placement of individual controls within a
group. These templates can be shared between groups and assist in providing a consistent
user experience.

Controls
Controls are the lowest level of user interface element that can be added to the ribbon. The
types of controls are well-defined and cannot be extended; this ensures consistency of user
experience. Some of the most commonly used controls include buttons, checkboxes, and
drop-downs. A few task-specific controls include a color picker and an insert table control
that displays a grid that can be used to specify the dimensions of a table.

Contextual Tabs
In addition to the preceding components that are the basis of the ribbon user interface,
you’ll also see contextual elements such as ContextualTabs and ContextualGroup. As
mentioned, tabs can be hidden when not required. However, one of the design principles
behind the ribbon is that commands should be easily discoverable. As a result, tabs should

42 PART II Presentation Layer

not be hidden in real time. For example, if a tab contains controls for editing images, the
tab should not be hidden when no images appear on the page.

Although this makes sense from a command discoverability perspective, it also means
that sometimes more tabs are available than are absolutely necessary. To get around this
problem, the ribbon includes the contextual group, which can contain tabs that should be
visible only if a specific action is performed in the user interface. To use our image example,
if the user selects an image on the page, the Image Editing Tools contextual group becomes
visible, giving access to the required tabs. The difference between using tabs within a
contextual group and standard tabs is that a contextual group highlights the fact that the
tabs have been added and includes a group name that helps users to establish the context
of the tabs.

Scaling
One other aspect of the ribbon that is also defined using XML is scaling. Another key
design principle of the ribbon is the idea of spaciousness. Looking back to older products
such as Excel 95, recall that the user interface consisted of many square buttons, each with
a different icon. For users familiar with the product, this didn’t present an issue because
they understood what the icon meant; for new users, these aspects of the user interface
meant a steep learning curve. The spaciousness of the ribbon allows as much descriptive
information to be added to a control as possible. Rather than using a small button with an
icon, a larger button with a more illustrative icon and a text description of the command
are used. For new users, this makes life much easier.

To provide user interface designers with control over how commands are represented
when the ribbon is resized, each tab must define scaling rules for each group within the
tab. This allows user interface designers to prioritize certain commands at the expense of
others if space is limited on the page. You can see this at work by navigating to a SharePoint
page that contains a number of commands in the ribbon and then resizing the browser
window. Generally speaking, the controls on the right side of the page will reduce in size,
and the controls in the first group will retain their presentation.

Extending the Ribbon
You can add controls to the ribbon in a few ways: you can either add the controls declaratively
using an elements file, or you can programmatically add controls using custom code. Let’s
look at how to add a custom tab declaratively.

 1. Use the Chapter3 project file that we created earlier. Choose Project | Add New
Item. From the Add New Item dialog, select Empty Element. Name the item
MyNewTab, as shown:

Chapter 3 Presentation Layer Overview 43

P
a

rt
 I

I

 2. Add the following code to the Elements.xml file in the MyNewTab folder:

<?xml version="1.0" encoding="utf-8"?>
<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
 <CustomAction Id="Chapter3.CustomTab" Location="CommandUI.Ribbon"
 RegistrationType="List" RegistrationId="101">
 </CustomAction>
</Elements>

 CustomAction elements are used to add command buttons and other elements
to the user interface. The Location attribute dictates where the commands will be
added. Since our custom tab will be added to the ribbon, we’ve used the location
CommandUI.Ribbon.

TIP For a complete list of locations, see http://msdn.microsoft.com/en-us/library/bb802730.aspx.

 CustomActions can optionally be bound to list types; in our example, we’re using
type 101, which refers to the Document Library list type. You can also bind a
custom action to a specific content type. For more information on content types,
see Chapter 13.

http://msdn.microsoft.com/en-us/library/bb802730.aspx

44 PART II Presentation Layer

 3. Within the CustomAction element, add the following code:
<CommandUIExtension>
 <CommandUIDefinitions>
 <CommandUIDefinition Location="Ribbon.Tabs._children">
 <Tab Id="Chapter3.CustomTab" Title="Chapter3"
Description="Demo tab for Chapter 3" Sequence="501">
 </Tab>
 </CommandUIDefinition>
 </CommandUIDefinitions>
 </CommandUIExtension>

 We’re creating a Tab element. Because we want to add a new tab to the ribbon, we’re
setting the Location attribute of the parent CommandUIDefinition element to
Ribbon.Tabs._children. If we were adding a group to an existing tab or a control
to an existing group, we’d set the Location to an appropriate value such as Ribbon

.ListItem.New.Controls._children to add a control to the New group in the
ListItem tab.

 4. Within the Tab element, add the following code:
<Scaling Id="Chapter3.CustomTab.Scaling">
 <MaxSize Id="Chapter3.FirstDemoGroup.MaxSize"
 GroupId="Chapter3.FirstDemoGroup"
 Size="OneLarge"/>
 <Scale Id="Chapter3.FirstDemoGroup.Scaling.CustomTabScaling"
 GroupId="Chapter3.FirstDemoGroup"
 Size="OneMedium" />
</Scaling>
<Groups Id="Chapter3.Groups">
 <Group Id="Chapter3.FirstDemoGroup"
 Description="Contains Demo controls"
 Title="Demo Group"
 Sequence="52"
 Template="Ribbon.Templates.SingleButton">
 <Controls Id="Chapter3.FirstDemoGroup.Controls">
 </Controls>
 </Group>
</Groups>

 We’re performing two actions in this step. First, we’re specifying how the groups
within our tab should scale. For each group, a MaxSize and a Scale element should
be added to the Scaling group. The MaxSize element defines the default template
that should be used when there are no space constraints. The Scale element defines
the template that should be used when there is insufficient space to display the
template reference in the MaxSize element.

 The second action that we’re performing is to define the groups that make up the
tab. Each Group element has a Template attribute that is used to specify the template
that will be used to lay out the group controls within the ribbon.

 5. Within the Controls element, add the following code:

<Button Id="Chapter3.FirstDemoGroup.HelloWorld"
 Sequence="15"
 Image16by16="/_layouts/images/NoteBoard_16x16.png"
 Image32by32="/_layouts/images/NoteBoard_32x32.png"

Chapter 3 Presentation Layer Overview 45

P
a

rt
 I

I

 Description="Displays a Hello World message"
 LabelText="Hello World"
 TemplateAlias="c1"/>

 This addition is relatively straightforward: we’re adding a button control to our
group. One thing worth noting is the TemplateAlias attribute; as you’ll see, this
value is used to hook controls up to positions within the template that’s specified
in the Group element.

 6. After the CommandUIDefinition element, add the following code:

<CommandUIDefinition Location="Ribbon.Templates._children">
 <GroupTemplate Id="Ribbon.Templates.SingleButton">
 <Layout Title="OneLarge" LayoutTitle="OneLarge">
 <Section Alignment="Top" Type="OneRow">
 <Row>
 <ControlRef DisplayMode="Large" TemplateAlias="c1" />
 </Row>
 </Section>
 </Layout>
 <Layout Title="OneMedium" LayoutTitle="OneMedium">
 <Section Alignment="Top" Type="OneRow">
 <Row>
 <ControlRef DisplayMode="Medium" TemplateAlias="c1" />
 </Row>
 </Section>
 </Layout>
 </GroupTemplate>
</CommandUIDefinition>

 In this section, we’re defining a template for use by our custom group. Things to
notice in this snippet are the TemplateAlias attributes, which are used to hook up
the ControlRef elements in the template to the actual controls in the group. Also
notice the two layout elements; each template can contain multiple layout elements.
Effectively, a template is a collection of layouts, and groups can be bound to a
maximum of two layouts: one layout to use when there are no space restrictions
and another to use when space is restricted.

 7. We can now deploy our customization. Choose Build | Deploy Chapter3. Using the
browser, navigate to the demo site that we created earlier, and from the navigation
pane select the MyCustomPages document library. Our new Chapter3 tab will be
visible within the ribbon, as shown:

46 PART II Presentation Layer

Handling Events from the Ribbon
You’ve seen how to add a control to the ribbon declaratively. However, the control we added
doesn’t do anything useful. Let’s look at how we can handle events that are generated from
our ribbon customizations. As mentioned, a predefined number of controls can be added
to the ribbon. A list of these can be found at http://msdn.microsoft.com/en-us/library/
ee537017.aspx.

If we look at the ColorPicker control, we find that the following attributes are defined:

Command• This attribute is used to specify a command that should be executed
when the control is clicked. This attribute is present on all ribbon controls.

CommandPreview• This attribute is used to specify a command that should be
executed for previewing a color selection.

CommandRevert• This attribute is used to specify a command that should be
executed to revert a preview command.

QueryCommand• This attribute is used to specify a command that should be
executed to retrieve state information. In a sense, these attributes allow us to hook
up event handlers for whatever events are defined by the control. Since the ribbon
is primarily generated on the client side, handling events must also take place using
client-side scripting. In the case of the ribbon, this is commonly done using JavaScript
and the Client Object Model (covered in detail in Chapter 4), although it is possible
to use other techniques for handling events, as you’ll see.

To see how this works in practice, let’s add an event handler for our button control.

 1. To the Button element in the Elements.xml file, add the following attribute:
<Button Id="Chapter3.FirstDemoGroup.HelloWorld"

Command="Chapter3.HelloWorldCommand"
 Sequence="14"
 Image16by16="/_layouts/images/NoteBoard_16x16.png"
 Image32by32="/_layouts/images/NoteBoard_32x32.png"
 Description="Displays a Hello World message"
 LabelText="Hello World"
 TemplateAlias="c1"/>

 2. After the closing tag of the CommandUIDefinitions element, add the following
element:

<CommandUIHandlers>
 <CommandUIHandler Command="Chapter3.HelloWorldCommand"
 CommandAction="javascript:
 var notificationId = SP.UI.Notify.addNotification('Hello World');" />
</CommandUIHandlers>

The Command attribute (and any other event handling attributes on a control) contains a
reference to a CommandUIHandler element. The CommandUIHandler then defines the
action that should be taken when the event is raised. In this simple example, we’re executing
some inline JavaScript to show a notification message using the Client Object Model.

Deploy the revised solution. If all is well, clicking the Hello World button will show a
message using the Notifications framework, as shown here:

http://msdn.microsoft.com/en-us/library/ee537017.aspx
http://msdn.microsoft.com/en-us/library/ee537017.aspx

Chapter 3 Presentation Layer Overview 47

P
a

rt
 I

IDisabling Controls
Earlier you saw that controls on the ribbon can’t have their visibility toggled for usability
reasons. When a command cannot be used, best practice dictates that it should be disabled.
Let’s look at how we can add this functionality to our button command.

On our CommandUIHandler element, add the following attribute:

<CommandUIHandler Command="Chapter3.HelloWorldCommand"
 CommandAction="javascript:
var notificationId = SP.UI.Notify.addNotification('Hello World');"
 EnabledScript="javascript:
function helloWorldEnable()
 {
 return new Date().getMinutes()%2;
 }
 helloWorldEnable();"/>

This simple example periodically disables the button depending on the current time.
The EnabledScript attribute should refer to a script that returns a Boolean value. One thing
that this example highlights is that the script specified in EnableScript is called only when
users click controls in the user interface.

Complex Event Handling
The preceding examples have shown you how to handle events using embedded JavaScript;
although this works well, as the JavaScript becomes more complex, it gets increasingly
difficult to manage. A common approach to dealing with this problem is to maintain scripts
as separate files. Let’s look at how we can use external scripts when handling events.

Adding Script Links Using a Delegate Control
The first thing that we need to do when using external scripts is to find a way to add a link
to the script to our page. The best method to achieve this is to use a delegate control. Delegates
are covered in more detail in Chapter 7—but for now it’s enough to know that a delegate
can be used to override certain parts of a SharePoint page. The out-of-the-box master page
that ships with SharePoint 2010 includes a delegate control named AdditionalPageHead in
the page header. By adding our own content to this delegate, we can add references to our
external scripts.

 1. The easiest way to implement a delegate control is to add a user control to the
%SPROOT%/TEMPLATE/CONTROLTEMPLATES folder. This folder is mounted
on all SharePoint sites as /_ControlTemplates/, and user controls contained here

48 PART II Presentation Layer

can use code-behind in assemblies that are stored in the Global Assembly Cache
(GAC). To add a new user control, choose Project | Add New Item. Select User
control in the Add New Item dialog and set the name to CustomRibbonHeader.ascx,
as shown next:

 2. The new user control will be placed in the ControlTemplates/Chapter3 folder by
default. In the CustomRibbonHeader.ascx file, add the following markup:

<SharePoint:ScriptLink Name="SP.js" LoadAfterUI="true"
 OnDemand="false" Localizable="false" runat="server" ID="ScriptLink1" />
<SharePoint:ScriptLink Name="CUI.js" LoadAfterUI="true"
 OnDemand="false" Localizable="false" runat="server" ID="ScriptLink2" />
<SharePoint:ScriptLink Name="/_layouts/Chapter3/Chapter3.PageComponent.js"
 LoadAfterUI="true" OnDemand="false" Localizable="false"
 runat="server" ID="ScriptLink3" />

 This code snippet uses ScriptLink controls to ensure that all required scripts
are loaded. SP.js contains core functions for the JavaScript Client Object Model,
whereas CUI.js contains functions necessary for the operation of the ribbon.

 3. In the Elements.xml file containing our CustomAction element, add the following
element after the closing tag of the CustomAction element:

<Control Id="AdditionalPageHead"
 Sequence="49"
 ControlSrc="~/_controltemplates/Chapter3/CustomRibbonHeader.ascx"/>

 This code hooks up our delegate control to the AdditionalPageHead delegate.

 4. Since the whole purpose of adding a delegate control is to include a link to our
custom external script file, our next step is to create the file. Select the Chapter3
project node in the Solution Explorer pane, and then choose Project | Add
SharePoint Layouts Mapped Folder.

Chapter 3 Presentation Layer Overview 49

P
a

rt
 I

I

 5. Add a new JavaScript file into the Layouts\Chapter3\ folder named Chapter3.
PageComponent.js. The final ScriptLink control in the preceding code snippet
will ensure that a reference to this file appears on the page.

Creating a Page Component
A page component is effectively a JavaScript code-behind file for our ribbon customization.
Page components are derived from the CUI.Page.PageComponent class that can be found
in cui.js, the out-of-the-box JavaScript file that is concerned with delivering the core
functionality of the ribbon.

TIP Many script files used in SharePoint have a debug version that is easier to read. These files
commonly have a .debug.js extension, such as CUI.debug.js.

By creating a custom page component and overriding the appropriate methods, we can
encapsulate the event handlers for our tab in a separate file. Follow these steps to create a
simple page component to support the demo tab that we added earlier.

 1. In the Chapter3.PageComponent.Js file that we created earlier, add the following
code:

Type.registerNamespace('Chapter3.PageComponent');
Chapter3.PageComponent = function () {
 Chapter3.PageComponent.initializeBase(this);
}
Chapter3.PageComponent.initialize = function () {
 ExecuteOrDelayUntilScriptLoaded(Function.createDelegate(null,
Chapter3.PageComponent.initializePageComponent), 'SP.Ribbon.js');
}
Chapter3.PageComponent.initializePageComponent = function () {
 var ribbonPageManager = SP.Ribbon.PageManager.get_instance();
 if (null !== ribbonPageManager) {
 ribbonPageManager.addPageComponent(Chapter3.PageComponent.instance);
 }
}
Chapter3.PageComponent.prototype = {
 init: function () { },
 getFocusedCommands: function () {
 return [''];
 },
 getGlobalCommands: function () {
 return ['Chapter3.HelloWorldCommand']
 },
 canHandleCommand: function (commandId) {
 if (commandId == 'Chapter3.HelloWorldCommand') {
 return true;
 }
 else {
 return false;
 }
 },
 handleCommand: function (commandId, properties, sequence) {
 if (commandId === 'Chapter3.HelloWorldCommand') {

50 PART II Presentation Layer

 var notificationId =
 SP.UI.Notify.addNotification('Hello World from page component');
 }
 },
 isFocusable: function () { return true; },
 receiveFocus: function () { return true; },
 yieldFocus: function () { return true; }
}
Chapter3.PageComponent.registerClass('Chapter3.PageComponent',
 CUI.Page.PageComponent);
Chapter3.PageComponent.instance = new Chapter3.PageComponent();
NotifyScriptLoadedAndExecuteWaitingJobs(“Chapter3.PageComponent.js");

 This script defines a new class, Chapter3.PageComponent, which inherits from
CUI.Page.PageComponent. By using this object, we can add all of our event
handling code within a separate file rather than having everything contained
within the CommandAction attribute of CommandUIHandler elements.

 The getGlobalCommands method returns a list of the commands that are supported
by the page component—in our case, we’re supporting only one command. The
canHandleCommand method is used to specify whether an item should be disabled
or not, and the handleCommand method is where we can add the actual
implementations for our event handlers. Commonly, these will take the form
of method calls.

 2. Since we’re no longer using the inline script in our CommandUIHandler element,
replace the attribute as follows:

<CommandUIHandlers>
<CommandUIHandler Command="Chapter3.HelloWorldCommand" CommandAction=""/>
</CommandUIHandlers>

 3. To initialize our custom page component, add the following JavaScript to the
CustomRibbonHeader.ascx file after the ScriptLink controls:

<script type="text/javascript">
//<![CDATA[
 function initChapter3Ribbon() {
 Chapter3.PageComponent.initialize();
 }
ExecuteOrDelayUntilScriptLoaded(initChapter3Ribbon, 'Chapter3.PageComponent.js');
//]]></script>

We’re now ready to deploy the revised solution. This time, clicking the Hello World
button will return the message specified in the Chapter3.PageComponent.js file.

Server-Side Event Handling
So far, you’ve seen how to add ribbon customizations and handle events using inline
JavaScript as well as via a custom page component. While this is very much the recommended
approach, for some functionality, access to the Server Object Model may be a requirement.

As well as creating page component files and manually writing JavaScript to handle our
events, SharePoint 2010 also provides server-side objects that can be used to add commands

Chapter 3 Presentation Layer Overview 51

P
a

rt
 I

I

to an existing custom page component. We’ll add a new button for the purposes of this
demonstration.

 1. In the Elements.xml file, add the following Group element after the closing tag for
the existing Group element:

<Group Id="Chapter3.SecondDemoGroup"
 Description="Contains Demo controls"
 Title="Demo Group 2"
 Sequence="51"
 Template="Ribbon.Templates.SingleButton">
<Controls Id="Chapter3.SecondDemoGroup.Controls">
 <Button
 Id="Chapter3.SecondDemoGroup.HelloWorld"
 Command="Chapter3.HelloWorldServerCommand"
 Sequence="15"
 Image16by16="/_layouts/images/NoteBoard_16x16.png"
 Image32by32="/_layouts/images/NoteBoard_32x32.png"
 Description="Displays a Hello World message"
 LabelText="Hello World"
 TemplateAlias="c1"/>
</Controls>
</Group>

 2. So that the new group will display properly, we need to add a Scaling/MaxSize

element. Between the existing MaxSize and Scale elements, add the following
element:

<MaxSize Id="Chapter3.SecondDemoGroup.MaxSize"
 GroupId="Chapter3.SecondDemoGroup" Size="OneLarge"/>

 3. Add the following code to the CustomRibbonHeader.ascx.cs file:

public partial class CustomRibbonHeader : UserControl,IPostBackEventHandler
 {
 public void RaisePostBackEvent(string eventArgument)
 {
 SPRibbonPostBackEvent pbEvent =
 SPRibbonPostBackCommand.DeserializePostBackEvent(eventArgument);
 SPContext.Current.List.Title = "Updated " + DateTime.Now;
 SPContext.Current.List.Update();
 }
 protected override void OnPreRender(EventArgs e)
 {
 List<IRibbonCommand> commands = new List<IRibbonCommand>();
 commands.Add(new SPRibbonPostBackCommand("Chapter3.HelloWorldServerCommand",

this, "true"));

 SPRibbonScriptManager sm = new SPRibbonScriptManager();
 sm.RegisterGetCommandsFunction(this.Page, "getGlobalCommands", commands);
 sm.RegisterCommandEnabledFunction(this.Page, "canHandleCommand", commands);
 sm.RegisterHandleCommandFunction(this.Page, "handleCommand", commands);
 }
 }

52 PART II Presentation Layer

 4. Make the following modification to the Chapter3.PageComponent.js file:

Chapter3.PageComponent.prototype = {
 init: function () { },
 getFocusedCommands: function () {return [''];},
 isFocusable: function () { return true; },
 receiveFocus: function () { return true; },
 yieldFocus: function () { return true; },
 getGlobalCommands: function () {
 var commands = getGlobalCommands();
 return commands.concat(['Chapter3.HelloWorldCommand']);
 },
 canHandleCommand: function (commandId) {
 if (commandId == 'Chapter3.HelloWorldCommand') {
 return true;
 }
 else {
 return commandEnabled(commandId);
 }
 },
 handleCommand: function (commandId, properties, sequence) {
 if (commandId === 'Chapter3.HelloWorldCommand') {
 var notificationId =
 SP.UI.Notify.addNotification('Hello World from page component');
 }
 else {
 return handleCommand(commandId, properties, sequence);
 }
 }
}

 5. Deploy the revised solution. The Chapter 3 tab will now contain two buttons: When
the first button is clicked, a notification will be displayed as before. When the
second button is clicked, the name of the current list will be updated to include
a time stamp, confirming that our server-side code is being executed.

In this sample, we’ve used the SPRibbonPostBackCommand to create a command
programmatically that emits the JavaScript code necessary to perform a server post back.
When using this technique, bear in mind that a custom page component is required.
The page component must make calls into the base class for getGlobalCommands,
commandEnabled, and handleCommand to hook up the server side event handler properly.

Summary
In this chapter, we looked at the main user interface components in SharePoint 2010 and
covered how pages are composed using a combination of local file system resources and
database content. We also looked at how the ribbon is constructed and covered how
customizations can be applied declaratively.

It’s fair to say that there’s something of a learning curve when it comes to ribbon
customizations and particularly in handling events. We covered the three key methods of
handling ribbon events; using these techniques, you can implement practically any custom
code. As you work through the remaining chapters in Part II, you’ll learn more about some
of the concepts discussed in this chapter.

4
CHAPTER

53

Client Object Model

Although the primary user interface for the SharePoint platform is the web browser, as the
capabilities of the platform have matured over time, more integration points in the form
of web services have been added to enable client applications to make better use of the
platform. With SharePoint 2010, Microsoft has taken this process to the next evolutionary
level by including a comprehensive Client Object Model. By using the Client Object Model,
you can integrate the functionality of SharePoint with traditional desktop applications, or
create a rich web-based user experience by using client-side technologies such as JavaScript
and Silverlight.

This chapter looks at the capabilities of the Client Object Model and digs a little deeper
into how the object model interacts with the traditional Server Object Model that’s also
covered in this book.

Architecture
The client object model has three variants:

JavaScript Client Object Model• This version is implemented in %SPRoot%\
Template\Layouts\SP.js. A lot of the new functionality in the SharePoint 2010 user
interface is implemented using the JavaScript Object Model, and you saw some
examples of this in Chapter 3’s discussion of the ribbon. The JavaScript Object
Model is useful for enhancing the user experience without requiring additional
plug-ins.

Silverlight Client Object Model• This version was designed for use by Silverlight
client applications and is implemented in %SPRoot%\Template\Layouts\ClientBin\
Microsoft.SharePoint.Client.Silverlight.dll and Microsoft.SharePoint.Client
.Silverlight.Runtime.dll. The Silverlight object model is useful when you’re
developing a more visually appealing and interactive user experience. While
JavaScript is useful for improving the interactivity of the user interface by
minimizing server-side post backs and page redrawing, at the end of the day,

New in

2010

54 PART II Presentation Layer

the visual presentation is still constrained by the limitations of HTML. Silverlight
has no such limitations, and when you’re using the Silverlight Object Model,
creating user interface components that reference SharePoint data is relatively
straightforward.

Managed Client Object Model• This version has been designed for use by
.NET-managed applications and is implemented in %SPRoot%\ISAPI\Microsoft
.SharePoint.Client.dll and Microsoft.SharePoint.Client.Runtime.dll. As you’ve
already seen, Silverlight and JavaScript are great tools for developing a rich web-
based user interface. However, the services available on the SharePoint platform
are not only useful to web clients, but they have myriad uses in rich-client applications
as well. For example, using a SharePoint document library as the data store for
a purchasing application would allow users to store created purchase orders in a
web-based system that could be used as an extranet tool by suppliers.

Although each of these variants has a slightly different implementation, in terms of the
capabilities exposed and the way that the object model works, they are all practically identical.
Each Client Object Model variant exposes a number of client-side representations of
server-side objects. Communication from the client-side object to the server-side counterpart
is accomplished via a new Windows Communication Foundation (WCF) service called
Client.svc, as the following illustration shows:

Effectively, Client.svc acts as a proxy for the actions performed on the client. It performs
the appropriate actions using the Server Object Model and returns the results to the client
using the lightweight JavaScript Object Notation (JSON) data exchange format.

NOTE From an implementation perspective, to ensure that the classes exposed by the Client Object
Model exactly matched the classes within the Server Object Model, the client classes were created
using a code-generation tool that examined the Server Object Model for classes that were decorated
with the ClientCallableType attribute.

Chapter 4 Client Object Model 55

P
a

rt
 I

I

Demonstration Environment Setup
To show some of the code snippets in this chapter in action, we’ll start by setting up a
demonstration environment and add some test data.

 1. Using a web browser, navigate to an appropriate root site within your SharePoint
farm—for example, http://<Your Server Name>. From the Site Actions menu,
choose New Site.

 2. In the Create dialog, select Team Site. Type the title for the new site, Chapter 4,
and the URL Name, Chapter4.

 3. After the site has been created, click the Lists link and select the Announcements list.

 4. Add a few rows of sample data; we’ll use this for our demo code.

Host Silverlight in SharePoint
To demonstrate the Silverlight Client Object Model, we’ll create a basic application and
host it in a page on our SharePoint test site. Take the following steps:

 1. Using Visual Studio, choose File | New Project.

 2. In the New Project dialog, select Empty SharePoint Project and name the new
project Chapter4, as shown:

 3. In the SharePoint Customization Wizard dialog, set the debugging site to the demo
site that we created earlier. Select Deploy As A Farm Solution, and then click Finish.

 4. Choose File | Add | New Project.

http://<YourServerName>

56 PART II Presentation Layer

 5. In the Add New Project dialog, select Silverlight in the Installed Templates list
and Silverlight Application in the middle pane, and then type the project name,
SilverlightCOMDemo, as shown:

 6. In the New Silverlight Application dialog, uncheck the Host The Silverlight
Application In A New Web Site checkbox, and then click OK.

 7. Choose Project | Add Reference.

 8. Select the Browse tab and navigate to %SPRoot%\Template\Layouts\ClientBin
and add references to Microsoft.SharePoint.Client.Silverlight.dll and Microsoft
.SharePoint.Client.Silverlight.runtime.dll. Be aware that the SPRoot environment
variable isn’t resolved in the Add Reference dialog, so you’ll need to enter the
complete path: C:\Program Files\Common Files\Microsoft Shared\Web Server

Extensions\14\Template\Layouts\ClientBin.

To ensure that our Silverlight project is automatically deployed as part of our
SharePoint project, let’s create a new document library in SharePoint and add the
compiled output of our Silverlight project to it as part of the build process:

 1. Right-click the Chapter4 project and select Add | New Item.

 2. Select List Instance from the list, and type the name SilverlightControls as shown:

Chapter 4 Client Object Model 57

P
a

rt
 I

I

 3. Type the display name for the list as SilverlightControls and then, from the Which
List Do You Want To Instantiate drop-down, select Document Library.

 4. Set the relative URL to SilverlightControls and click Finish.

 5. A new SilverlightControls folder will be added to the Chapter4 project. If it’s not
already open, open the Elements.xml file from the SilverlightControls folder and
add the following XML after the closing ListInstance tag:

<Module Name="SilverlightControls" Url="SilverlightControls">
 <File Path="SilverlightControls\SilverlightCOMDemo.xap"
 Url="SilverlightCOMDemo.xap" Type="GhostableInLibrary" />
 <File Path="SilverlightControls\JScriptTest.js"
 Url="JScriptTest.js" Type="GhostableInLibrary" />
 </Module>

 Element files are covered in more detail in Chapter 19. These files are used by the
deployment mechanism to determine configuration settings and files that should
be deployed to SharePoint when the package is installed. The additional XML
that we’ve added will load SilverlightCOMDemo.xap and JScriptTest.js into our
SilverlightControls document library. Of course, before we can load these files into
the library we need to create them.

 6. In the SilverlightControls folder, add a new JScript file named JScriptTest.js.

 7. Right-click the SilverlightCOMDemo project node and select Properties.

58 PART II Presentation Layer

 8. Select the Build Events tab, and in the Post-build event command line, enter the
following (on a single line):

xcopy "$(TargetDir)$(TargetName).xap"
 "$(SolutionDir)Chapter4\SilverlightControls" /Y

 This command line statement will copy the .xap file that’s built by the Silverlight
project into the SilverlightControls folder in our SharePoint project.

 9. To be sure that all is working correctly, build the Silverlight project by right-clicking
the SilverlightCOMDemo node and selecting Build.

 10. Click the Show All Files icon at the top of the Solution Explorer pane, as shown,
and then right-click the SilverlightCOMDemo.xap file in the SilverlightControls
folder and select Include In Project.

Chapter 4 Client Object Model 59

P
a

rt
 I

I

 11. Click the Show All files icon again to hide extraneous files. Select the JScriptTest.js
file, and then in the Properties pane, set the Deployment Type to ElementFile.
Repeat this process for the SilverlightCOMDemo.xap file.

 12. To ensure that the Silverlight project is always updated, right-click the Chapter 4
node and select Project Build Order.

 13. In the Dependencies tab, select Chapter4 from the Projects drop-down, and then
check the SilverlightCOMDemo dependency.

 14. We’re now ready to deploy our solution to our SharePoint site. Choose Build |
Deploy Chapter4.

Using the Silverlight Web Part
Our solution will create a new document library named SilverlightControls on our test site.
So that we can see our demo control, we need to host it within a SharePoint page. The
easiest way to do this is to use the new Silverlight web part that’s included out-of-the-box
with SharePoint 2010.

 1. Using a web browser, navigate to the Chapter4 demo site that we set up earlier.
Notice that a new SilverlightControls document library has been added, which
contains our Silverlight package and test JavaScript file.

 2. From the Site Actions menu, choose New Page. Name the new page SilverlightTest.

New in

2010

60 PART II Presentation Layer

 3. From the Insert tab in the ribbon, click the Web Part button. Then select the
Silverlight Web Part from the Media And Content category, as shown. Then click Add.

 4. In the Silverlight Web Part dialog, set the URL to <Demo SiteUrl>/

SilverlightControls/SilverlightCOMDemo.xap.

 5. From the Page tab in the ribbon, select Save.

Referencing the JavaScript Client Object Model
We’ll adopt a similar technique to test our JavaScript code. However, in this case, we don’t
have the luxury of a web part that hooks everything up for us, so we’ll need to edit the page
template to add the appropriate references.

 1. From the Site Actions menu, choose New Page. Name the new page JavaScriptTest.

 2. From the Page tab in the ribbon, click Save.

 3. Also from the Page tab, click the arrow under the Edit button and select Edit In
SharePoint Designer.

 4. In SharePoint Designer, from the Home tab on the ribbon, select Advanced Mode.

 5. In the Content control with the ID PlaceHolderAdditionalPageHead, add the
following markup after the SharePoint:RssLink tag (on one line):
<SharePoint:ScriptLink runat="server" Name="sp.js"
 Localizable="false" LoadAfterUI="true"/>

 6. Scroll to the bottom of the page, and before the WebPartPage:WebPartZone tag,
add the following markup (on one line):
<script type="text/javascript"
 src="../SilverlightControls/JScriptTest.js" ></script>
<div id="DemoConsole"></div>

Chapter 4 Client Object Model 61

P
a

rt
 I

I

 7. Click the Save icon in the upper-left corner of the window to save the changes to
SharePoint. Click Yes in the Site Definition Page Warning.

We’re now good to go. Our Chapter4 demo site has a Site Pages library containing a
JavaScript test page and a Silverlight test page. At the moment, neither of these pages will
display anything interesting, but as we progress through the examples in this chapter,
they’ll start to show how the Client Object Model works.

Available Client-side Objects
Not all server-side objects are available within the Client Object Model. Generally speaking,
all objects from SPSite downward are included. No representations of administrative classes,
such as those found in the Microsoft.SharePoint.Administration namespace, are included.

The Client Object Model is encapsulated in four namespaces:

Microsoft.SharePoint.Client• This namespace contains representations of many
commonly used server objects such as SPSite, SPWeb, SPList, SPListItem, and
SPField. These objects are implemented in the Client Object Model without the
SP prefix—so, for example, SPSite in the Server Object Model maps to Site in the
Client Object Model. This is the same for all variants of the Client Object Model.
The exception to this rule is the SPContext object, which is represented as
ClientContext in the Client Object Model. The ClientContext object is a key
component in the Client Object Model and exposes functionality that has no
direct counterpart in the SPContext server-side object. We’ll cover ClientContext
in greater detail in the next section.

Microsoft.SharePoint.Client.Utilities• This namespace contains representations of
a few commonly used server-side utility classes. Those included are HttpUtility, which
maps to SPHttpUtility on the server side; PrincipalInfo, which maps to SPPrincipalInfo
on the server side; and Utility, which maps to SPUtility on the server side.

Microsoft.SharePoint.Client.WebParts• This namespace contains representations
of server-side objects that are commonly used in the management of web parts.
Using the classes in this namespace, you can access and modify web parts and web
part pages.

Microsoft.Sharepoint.Client.Workflow• This namespace contains representations
of a number of server-side classes concerned with the operation of workflows. Using
the classes in this namespace, you can manage workflow associations and templates.

ClientContext
When writing code that uses the Server Object Model, you generally start with something
like this:

string GetWebName(string url)
 {
 using (SPSite site = new SPSite(url))
 {
 using (SPWeb web=site.OpenWeb(url))
 {

62 PART II Presentation Layer

 return “Title:" + web.Title + ", Description:" + web.Description;
 }
 }
 }

Or, if you’re writing code for a web part, you can use the following:

string GetWebName(string url)
 {
 return "Title:" + SPContext.Current.Web.Title
 + ", Description:" + SPContext.Current.Web.Description;
 }

Let’s take a look at how to achieve a similar result by using the Silverlight Client Object
Model:

 1. Using the SilverlightCOMDemo project that we added earlier, in MainPage.xaml,
add a button control and a label control.

 2. Select the button control and then, using the Properties pane, set the Content to
Get Web Details.

 3. Switch to the Events tab in the Properties pane and add Button_Click as the hander
for the Click event, as shown:

 4. Switch to MainPage.xaml.cs and add the following code:

private void Button_Click(object sender, RoutedEventArgs e)
 {
 ClientContext ctx=new ClientContext("Your Site URL Here");

Chapter 4 Client Object Model 63

P
a

rt
 I

I

 Web web = ctx.Web;
 ctx.Load(web);
 ctx.ExecuteQueryAsync((s, args) =>
 {
 Dispatcher.BeginInvoke(() => {
 label1.Content = "Title:" + web.Title
 + ", Description:" + web.Description; });
 }, null);
 }

 5. Build the SilverlightCOMDemo project and then deploy the solution. If a Deployment
Conflict dialog is presented indicating a conflict in the SilverlightControls project
item, check the Do Not Prompt Me Again For These Items checkbox and click Resolve
Automatically. The conflict occurs because list instances are not automatically
removed when a solution is retracted. (For more on this, see Chapter 19.)

 6. Navigate to the Silverlight Test page that we created earlier: http://<your Server
Url>/Chapter4/SitePages/SilverlightTest.aspx.

If we’re using the JavaScript version of the object model, we could take the following steps:

 1. Using SharePoint Designer, edit the JavascriptTest.aspx page that we created earlier.

 2. Above the WebPartPages:WebPartZone at the bottom of the page, insert the
following HTML:

<script type="text/javascript"
 src="../SilverlightControls/JScriptTest.js" ></script>
<input name="Button1" type="button" value="Get Web Details"
 onclick="Button_Click()"></input>
<div id="DemoConsole"></div>

 3. In the JScriptTest.js file that we added earlier, add the following code:

/// <reference path="C:\Program Files\Common Files\Microsoft Shared\
Web Server Extensions\14\TEMPLATE\LAYOUTS\MicrosoftAjax.js" />
/// <reference path="C:\Program Files\Common Files\Microsoft Shared\Web
Server Extensions\14\TEMPLATE\LAYOUTS\SP.debug.js" />

function Button_Click() {
 var ctx = new SP.ClientContext.get_current();
 var web = ctx.get_web();
 ctx.load(web);
 ctx.executeQueryAsync(function(s,args) {
 var console = document.getElementById('DemoConsole');
 console.innerHTML = "Title:" + web.get_title()
 + ", Description:" + web.get_description();
 },
 null);
}

 4. Deploy the solution, and then navigate to the JavaScript Test page that we created
earlier: http://<your Server Url>/Chapter4/SitePages/JavaScriptTest.aspx.

http://<yourServerUrl>/Chapter4/SitePages/SilverlightTest.aspx
http://<yourServerUrl>/Chapter4/SitePages/SilverlightTest.aspx
http://<yourServerUrl>/Chapter4/SitePages/JavaScriptTest.aspx

64 PART II Presentation Layer

The important thing to notice in these samples is the use of the ClientContext object as
the entry point to the Client Object Model. When called by the Silverlight sample, a URL is
required, but the JavaScript sample doesn’t need a URL because the URL is derived from
the current page. Also notice the use of the reference elements. These allow Visual Studio
2010 to provide IntelliSense support for the Client Object Model.

NOTE Slight naming differences exist between the JavaScript and .NET versions of the object model.
Rather than explicitly state the various names for each object, I’ll use the .NET names here. As a
general rule, names in the JavaScript object model begin with lowercase characters and properties
are prefixed with get_.

Operation Batching
The ClientContext class includes a few methods that are essential to the workings of the
Client Object Model. The first of these methods is the ClientContext.ExecuteQueryAsync
method.

Earlier, in our architecture diagram, we saw that the Client Object Model makes use
of a WCF service as a proxy to perform operations on the server. To reduce network load,
what actually happens is that all requests are queued by the ClientContext object and are
sent to the server only when the ExecuteQueryAsync method is called. Conceptually, this is
easy to understand, but it makes for some interesting caveats when it comes to developing
against the Client Object Model.

To see how this works, consider our earlier Silverlight code sample:

private void Button_Click(object sender, RoutedEventArgs e)
 {
 ClientContext ctx=new ClientContext("Your Site URL Here");
 Web web = ctx.Web;
 ctx.Load(web);
 ctx.ExecuteQueryAsync((s, args) =>
 {
 Dispatcher.BeginInvoke(() => {
 label1.Content = "Title:" + web.Title +
 ", Description:" + web.Description; });
 }, null);
 }

In this snippet, we’re creating a ClientContext object and then picking up a reference to its
Web property. However, before we can read the values of the web object, we need to call the
ClientContext.Load method to queue the object for loading and then call ExecuteQueryAsync
to execute the queued operations.

As its name suggests, ExecuteQueryAsync is an asynchronous operation. It accepts as
parameters two delegates: one to be called if the operation fails and another to be called
when the operation is successful. For simplicity, we’ve used lambda expressions in this
sample. When writing code that uses the Silverlight Client Object Model or the JavaScript
Client Object Model, ExecuteQueryAsync must be used to make an asynchronous call to
Client.svc. However, if using the Managed Client Object Model, which is generally the case
when integrating rich client applications, it’s possible to call Client.svc synchronously by
using the ClientContext.ExecuteQuery method.

Chapter 4 Client Object Model 65

P
a

rt
 I

I

Retrieving Data
As you saw in the preceding code snippets, although the Client Object Model defines client-
side representations of server objects and we can create instances of those objects in our
code, the objects are not populated with a copy of the server-side data until it is explicitly
loaded.

In-place Load
This Silverlight code snippet shows how to execute a Collaborative Application Markup
Language (CAML) query against a list:

private void CAMLQUery_Click(object sender, RoutedEventArgs e)
 {
 ClientContext ctx = new ClientContext("Your site here");
 CamlQuery query = new CamlQuery();
 query.ViewXml = "<View><Query><OrderBy>
 <FieldRef Name=\"Editor\" Ascending=\"False\" />
 </OrderBy></Query></View>";
 List announcements = ctx.Web.Lists.GetByTitle("Announcements");
 FieldCollection fields = announcements.Fields;
 ctx.Load(fields);
 ListItemCollection listItems = announcements.GetItems(query);
 ctx.Load(listItems);
 ctx.ExecuteQueryAsync((s, args) =>
 {
 Dispatcher.BeginInvoke(() =>
 {
 BuildTable(fields, listItems);
 });
 }, (s, args) =>
 {
 Dispatcher.BeginInvoke(() =>
 {
 label1.Content = args.Message;
 });
 });
 }

To perform the same function using JavaScript, you can use this:

function CAMLQuery_Click() {
 var ctx = new SP.ClientContext.get_current();
 var query = new SP.CamlQuery();
 query.viewXml = "<View><Query><OrderBy>
 <FieldRef Name=\"Editor\" Ascending=\"False\" />
 </OrderBy></Query></View>";
 var announcements = ctx.get_web().get_lists().getByTitle("Announcements");
 var listItems = announcements.getItems(query);
 ctx.load(listItems);
 var fields = announcements.get_fields();
 ctx.load(fields);
 ctx.executeQueryAsync(function (s, args) {

66 PART II Presentation Layer

 var console = document.getElementById('DemoConsole');
 console.innerHTML = buildTable(fields,listItems);
 }, null);
}

The important thing to note about these code samples is the use of the
ClientContext.Load method. This method flags the passed in object to be populated
the next time ExecuteQueryAsync is called, so in the preceding example, ctx.Load(listItems)

will flag the listItems object for population.
To use these code snippets with the demo project that we set up earlier, take the

following steps—first, for the Silverlight sample:

 1. Add a new button labeled Execute CAML Query to MainPage.xaml, and set the
Click event handler to CAMLQuery_Click.

 2. Add the Silverlight code snippet listed above into MainPage.xaml.cs.

 3. Add a ScrollViewer control to MainPage.xaml and then, inside the ScrollViewer,
add a Grid control named grid1.

 4. Add the following code into MainPage.xaml.cs:

void BuildTable(FieldCollection fields, ListItemCollection listItems)
 {
 grid1.RowDefinitions.Clear();
 grid1.ColumnDefinitions.Clear();
 grid1.ShowGridLines = false;
 grid1.RowDefinitions.Add(new RowDefinition {
 Height=new GridLength(0,GridUnitType.Auto)});
 int i = 0;
 foreach (var field in fields)
 {
 if (!field.Hidden)
 {
 grid1.ColumnDefinitions.Add(new ColumnDefinition {
 Width=new GridLength(0,GridUnitType.Auto)
 });
 TextBlock label = new TextBlock
 {
 Text = field.Title,
 HorizontalAlignment = HorizontalAlignment.Center,
 FontWeight = FontWeights.Bold,
 Margin = new Thickness(10, 0, 10, 0),
 };
 label.SetValue(Grid.RowProperty, 0);
 label.SetValue(Grid.ColumnProperty, i);
 grid1.Children.Add(label);
 i++;
 }
 }
 int row = 1;
 foreach (var item in listItems)
 {
 i = 0;
 grid1.RowDefinitions.Add(new RowDefinition {

Chapter 4 Client Object Model 67

P
a

rt
 I

I

 Height=new GridLength(0,GridUnitType.Auto)});
 foreach (var field in fields)
 {
 if (!field.Hidden)
 {
 TextBlock label = new TextBlock {
 HorizontalAlignment = HorizontalAlignment.Center,
 Margin = new Thickness(10, 0, 10, 0),
 };
 try
 {
 label.Text = item[field.StaticName].ToString();
 }
 catch (Exception)
 {
 label.Text = "--";
 }
 label.SetValue(Grid.RowProperty, row);
 label.SetValue(Grid.ColumnProperty,i);
 i++;
 grid1.Children.Add(label);
 }
 }
 row++;
 }
 }

 5. Build the SilverlightCOMDemo project.

 Now, for the JavaScript sample, do the following:

 1. Using SharePoint Designer, modify JavascriptTest.aspx to include an additional
button.

 2. Above the DemoConsole div tag that we added earlier, insert the following
markup:

<input name="Button2" type="button" value="Execute CAML Query"
 onclick="CAMLQuery_Click()"></input>

 6. Within the JScriptTest.js file in our SharePoint project, add the CAMLQuery_Click
JavaScript sample method listed above and then add the following function:

function buildTable(fields,listItems) {
 var output = "";
 output = "<table><thead style=\"font-weight:bold\"><tr>";
 var fieldEnum = fields.getEnumerator();
 while (fieldEnum.moveNext()) {
 var field = fieldEnum.get_current();
 if (field.get_hidden() != true) {
 output += "<td>" + field.get_title() + "</td>";
 }
 }
 output += "</tr></thead>";
 var enumerator = listItems.getEnumerator();
 while (enumerator.moveNext()) {

68 PART II Presentation Layer

 var item = enumerator.get_current();
 fieldEnum.reset();
 output += "<tr>";
 while (fieldEnum.moveNext()) {
 var field = fieldEnum.get_current();
 if (field.get_hidden() != true) {
 try {
 output += "<td>" + item.get_item(field.get_staticName()) + "</td>";
 } catch (e) {
 output += "<td>--</td>";
 }
 }
 }
 output += "</tr>";
 }
 output += "</table>"
 return output;
}

With these changes in place, by deploying the solution, we can view the results of our
CAML query as a table using either the Silverlight test page or the JavaScript test page that
we added earlier in the chapter.

Object Identity
Although property values are not populated until they are explicitly loaded, it is still
possible to make use of the properties in expressions, as long as the expressions themselves
are not enumerated until after the properties are loaded. In our code sample, we can see
an example of this in the following line:

List announcements = ctx.Web.Lists.GetByTitle("Announcements");

If we were to attempt to enumerate any of the properties of the announcements object,
an error would be thrown since the value has not been initialized. The same is also true of
the properties of the object referred to by the ctx.Web property. We can use the property in
an expression because an expression uses a reference to the property rather than its actual
value.

You can see that our code sample makes use of the announcements object in various
places, but we never explicitly populate it. Loading an object is necessary only if its properties
will be converted to a value.

One easy way to look at it is to consider that each object is a proxy for an appropriate
server-side object. Using the proxy, we can perform many of the same actions, but until we
explicitly load data from the real object into the proxy, we can’t use the data on the client
side because it exists only on the server.

Filtering Returned Data
When we execute the preceding code samples, a table is generated containing the field
values that are returned for each list item, as shown:

Chapter 4 Client Object Model 69

P
a

rt
 I

I

This works well and doesn’t present much of a problem when only a few items are included
in the list or library. But what happens if tens of thousands of items are included and we
need only one or two columns? Transferring all this redundant data to the client would
have a major performance impact.

Thankfully, we can eliminate redundant data by filtering the properties that are
populated by the Load method, as the following snippets show. To see the results of these
samples, create a new button and hook up the Click event to the sample code, as we’ve
done in the past few samples.

Here’s the snippet in Silverlight:

private void FilterQuery_Click(object sender, RoutedEventArgs e)
{
 ClientContext ctx = new ClientContext("Your site here");
 CamlQuery query = new CamlQuery();
 query.ViewXml = "<View><Query><OrderBy>
 <FieldRef Name=\"Editor\" Ascending=\"False\" />
 </OrderBy></Query></View>";
 List announcements = ctx.Web.Lists.GetByTitle("Announcements");

 FieldCollection fields = announcements.Fields;
 ctx.Load(fields,
 fs => fs.Include(
 f => f.Hidden,
 f => f.Title,
 f => f.StaticName).Where(f => f.Hidden == false)
);
 ListItemCollection listItems = announcements.GetItems(query);
 ctx.Load(listItems,
 items => items.Include(
 item => item["Title"]
));

70 PART II Presentation Layer

 ctx.ExecuteQueryAsync((s, args) =>
 {
 Dispatcher.BeginInvoke(() =>
 {
 BuildTable(fields, listItems);
 });
 }, (s, args) =>
 {
 Dispatcher.BeginInvoke(() =>
 {
 label1.Content = args.Message;
 });
 });
}

And here’s the JavaScript:

function FilteredQuery_Click() {
 var ctx = new SP.ClientContext.get_current();
 var query = new SP.CamlQuery();
 query.viewXml = "<View><Query><OrderBy>
 <FieldRef Name=\"Editor\" Ascending=\"False\" />
 </OrderBy></Query></View>";
 var announcements = ctx.get_web().get_lists().getByTitle("Announcements");
 var listItems = announcements.getItems(query);
 ctx.load(listItems,"Include(Title)");
 var fields = announcements.get_fields();
 ctx.load(fields,"Include(Hidden,Title,StaticName)");
 ctx.executeQueryAsync(function (s, args) {
 var console = document.getElementById(‘DemoConsole’);
 console.innerHTML = buildTable(fields, listItems);
 }, null);
}

In the Silverlight sample, we’re making use of lambda expressions and Language
Integrated Query (LINQ) to filter the returned data. (If you’re unfamiliar with LINQ or
lambda expressions, see Chapter 14 for more information.) Because LINQ syntax isn’t
supported by JavaScript, we’re using a string containing a filter expression. When creating
JavaScript filter strings, LINQ operations such as Where are not supported.

You can see that by running these samples, the resulting table contains only the Title
column. Although you can’t see it from the output, the population of the fields collection
has been filtered to include only the properties that are required for the logic. The result
of these changes is that the data exchanged between client and server is greatly reduced.

NOTE When querying lists or libraries, you need to be aware of how filtering is applied behind the
scenes. First, the CAML query object passed into the GetItems method is used to retrieve a list
of items into memory. With the item list in memory, LINQ to Objects is used to apply the filters that
we’re defining with the Load method. This is significant, because when you’re querying large lists,
item-level filtering should always be done using CAML to reduce the memory usage on the server. As
you’ll see in Chapter 13, restrictions are imposed on the number of items that can be retrieved from
a list in a single query.

Chapter 4 Client Object Model 71

P
a

rt
 I

I

Queryable Load
In addition to the ClientContext.Load method used in the preceding examples, the Client
Object Model also provides a ClientContext.LoadQuery method. The difference between
these two methods is in the object that receives the results of the method. When calling
Load, we’ll pass in a reference to the object that we want to load along with any filtering
expression; when the method has executed, that object that we passed in is loaded with the
appropriate data. With LoadQuery, when the method has executed, an IEnumerable(T)
collection is returned.

You may be wondering about the benefits of such a subtle difference between these
methods. The main benefit is that LoadQuery can accept a LINQ query as a parameter;
also, the results returned can be further processed using LINQ.

In the preceding Silverlight example, we could replace this

 FieldCollection fields = announcements.Fields;
 ctx.Load(fields,
 fs => fs.Include(
 f => f.Hidden,
 f => f.Title,
 f => f.StaticName).Where(f => f.Hidden == false)
);

with this:

var filteredFields = announcements.Fields.Include(
 f => f.Hidden,
 f => f.Title,
 f => f.StaticName);

var fields = ctx.LoadQuery(from f in filteredFields
 where f.Hidden == false
 select f);

In the second example, the fields variable contains an IEnumerable<Field> object as
opposed to the FieldCollection object that would be populated with the first example.

Although the JavaScript object model also includes the loadQuery method, since
JavaScript doesn’t support LINQ, its primary function is to return the results as a separate
variable rather than populating the appropriate ClientContext property. Other than that,
there is no real benefit to using loadQuery in JavaScript.

Adding Data
Adding data using the Client Object Model is a relatively straightforward process, as these
snippets show. However, the ListItemCreationInformation object can also be used to set a
few system properties when creating a new list item. For example, when you’re creating a
list item within a folder, you can use the FolderUrl property to specify the location of the
folder.

72 PART II Presentation Layer

The following code sample shows how a new list item can be added using the Silverlight
Client Object Model:

private void Add_Click(object sender, RoutedEventArgs e)
{
 ClientContext ctx = new ClientContext("Your Server Here");
 List announcements = ctx.Web.Lists.GetByTitle("Announcements");
 ListItemCreationInformation createInfo = new ListItemCreationInformation();
 ListItem newItem = announcements.AddItem(createInfo);
 newItem["Title"] = "A new item";
 newItem.Update();
 ctx.ExecuteQueryAsync((s, args) =>
 {
 Dispatcher.BeginInvoke(() =>
 {
 label1.Content = "Item Added";
 });

 }, (s, args) =>
 {
 Dispatcher.BeginInvoke(() =>
 {
 label1.Content = args.Message;
 });
 });
}

When using the JavaScript object model, the code is similar:

function Add_Click() {
 var ctx = new SP.ClientContext.get_current();
 var announcements = ctx.get_web().get_lists().
getByTitle("Announcements");
 var createInfo = new SP.ListItemCreationInformation();
 var newItem = announcements.addItem(createInfo);
 newItem.set_item("Title", "A new javascript item");
 newItem.update();
 ctx.executeQueryAsync(function (s, args) {
 var console = document.getElementById(‘DemoConsole’);
 console.innerHTML = "Add Completed";
 }, null);
}

Updating Data
So far, you’ve seen a few ways to retrieve data using the Client Object Model, as well as how
to add new items to SharePoint lists and libraries. Our next logical step is to look at how
we can update the data that we’ve retrieved and submit the changes back to SharePoint.

Here’s how to do this in Silverlight:

private void Update_Click(object sender, RoutedEventArgs e)
{
 ClientContext ctx = new ClientContext(Your Server Here");

Chapter 4 Client Object Model 73

P
a

rt
 I

I

 CamlQuery query = new CamlQuery();
 query.ViewXml = "<View><Query><OrderBy>" +
 "<FieldRef Name=\"Editor\" Ascending=\"False\" />" +
 "</OrderBy></Query></View>";
 List announcements = ctx.Web.Lists.GetByTitle("Announcements");
 ListItemCollection listItems = announcements.GetItems(query);
 ctx.Load(listItems);
 ctx.ExecuteQueryAsync((s, args) =>
 {
 foreach (var item in listItems)
 {
 item["Title"] = "Updated";
 item.Update();
 }
 ctx.ExecuteQueryAsync((s1, args1) =>
 {
 Dispatcher.BeginInvoke(() =>
 {
 label1.Content = "Records Updated";
 });
 }, null);
 }, (s, args) =>
 {
 Dispatcher.BeginInvoke(() =>
 {
 label1.Content = args.Message;
 });
 });
}

And here it is in JavaScript:

function Update_Click() {
 var ctx = new SP.ClientContext.get_current();
 var query = new SP.CamlQuery();
 query.viewXml = "<View><Query><OrderBy>" +
 "<FieldRef Name=\"Editor\" Ascending=\"False\" />" +
 "</OrderBy></Query></View>";
 var announcements = ctx.get_web().get_lists().getByTitle("Announcements");
 var listItems = announcements.getItems(query);
 ctx.load(listItems, "Include(Title)");
 ctx.executeQueryAsync(function (s, args) {
 var itemEnum = listItems.getEnumerator();
 while (itemEnum.moveNext()) {
 var item = itemEnum.get_current();
 item.set_item("Title","JavaScript Update");
 item.update();
 }
 ctx.executeQueryAsync(function (s, args) {
 var console = document.getElementById('DemoConsole');
 console.innerHTML =" JavaScript Update Completed";
 }, null);
 }, null);
}

74 PART II Presentation Layer

As you can see from these code samples, updating values from the Client Object Model
works in a similar way to updating objects on the server, in that the Update method must be
called to commit the changes.

Deleting Data
Deleting data is relatively straightforward and follows a pattern similar to how it’s done
using the Server Object Model.

To delete an item using the Silverlight Client Object Model, we could use code such
as this:

private void Delete_Click(object sender, RoutedEventArgs e)
{
 ClientContext ctx = new ClientContext("Your Server Here");
 CamlQuery query = new CamlQuery();
 query.ViewXml = "<View><Query>" +
 "<OrderBy><FieldRef Name=\"Editor\" Ascending=\"False\" />" +
 "</OrderBy></Query></View>";
 List announcements = ctx.Web.Lists.GetByTitle("Announcements");

 ListItemCollection listItems = announcements.GetItems(query);
 ctx.Load(listItems);
 ctx.ExecuteQueryAsync((s, args) =>
 {
 ListItem lastItem = listItems[listItems.Count - 1];
 lastItem.DeleteObject();
 announcements.Update();

 ctx.ExecuteQueryAsync((s1, args1) =>
 {
 Dispatcher.BeginInvoke(() =>
 {
 label1.Content = "Last record deleted";
 });
 }, null);
 }, (s, args) =>
 {
 Dispatcher.BeginInvoke(() =>
 {
 label1.Content = args.Message;
 });
 });
}

If using JavaScript, our code would look like this:

function Delete_Click() {
 var ctx = new SP.ClientContext.get_current();
 var query = new SP.CamlQuery();
 query.viewXml = "<View><Query><OrderBy>" +
 "<FieldRef Name=\"Editor\" Ascending=\"False\" />" +
 "</OrderBy></Query></View>";
 var announcements = ctx.get_web().get_lists().getByTitle("Announcements");

Chapter 4 Client Object Model 75

P
a

rt
 I

I

 var listItems = announcements.getItems(query);
 ctx.load(listItems, "Include(Title)");
 ctx.executeQueryAsync(function (s, args) {
 var lastItem=listItems.get_item(listItems.get_count()-1);
 lastItem.deleteObject();
 announcements.update();
 ctx.executeQueryAsync(function (s, args) {
 var console = document.getElementById('DemoConsole');
 console.innerHTML = " Last Item Deleted";
 }, null);
 }, null);
}

Using the Status Bar, Notifications,

and the Dialog Framework
Along with using the JavaScript Client Object Model to read and write to SharePoint data
structures, SharePoint 2010 also introduces a few of new APIs for providing user feedback.
All these new APIs are accessed via the SP.UI namespace and the JavaScript Client Object
Model.

The Status Bar
The status bar is a permanent fixture on the page. Messages added here remain on the
page until they are specifically removed programmatically. We can see an example of a
status bar message on the JavaScriptTest.aspx page. Since we’ve customized the page using
SharePoint Designer, a message informing us that “The current page as been customized
from its template” is automatically shown.

Using the SP.UI.Status object, we can add our own status messages as follows:

function StatusBarUpdate_Click() {

 SP.UI.Status.removeAllStatus(true);

 var sid = SP.UI.Status.addStatus("My New Status:",
 "Information Message", true);

 window.setTimeout(function () {
 UpdateStatusBar("D", "red", sid) }, 1000);
 window.setTimeout(function () {
 UpdateStatusBar("D I", "green", sid) }, 2000);
 window.setTimeout(function () {
 UpdateStatusBar("D I S", "blue", sid) }, 3000);
 window.setTimeout(function () {
 UpdateStatusBar("D I S C", "yellow", sid) }, 4000);
 window.setTimeout(function () {
 UpdateStatusBar("D I S C O", "green", sid) }, 5000);
 window.setTimeout(function () {
 SP.UI.Status.removeStatus(sid) }, 6000);
}

function UpdateStatusBar(message, color, sid) {

76 PART II Presentation Layer

 SP.UI.Status.updateStatus(sid, message);
 SP.UI.Status.setStatusPriColor(sid, color);
}

The call to Status.addStatus returns an identifier that can be used subsequently to
change the settings of the status bar. Notice that only one status bar exists, but it can
contain many status messages. The status bar always uses the color of the highest priority
message. For example, the color red is used for very important messages and the color blue
is used for information messages. If a very important message is displayed on the status bar
and an information message is added, the status bar will be rendered in red. For more
details on the mapping of color to priority, see http://msdn.microsoft.com/en-us/library/
ff408240.aspx.

Notifications
Although the status bar is great for showing permanent messages to the user, sometimes we
simply need to display a transient notification message. Using the SP.UI.Notify object,
we can show such messages:

function SendNotification_Click() {
 var nid=SP.UI.Notify.addNotification("My New notification", false);
}

By default, notification messages are displayed for 5 seconds, which is generally
sufficient for most throwaway notification messages. However, if we need the user to
perform some action, such as clicking a link, we can use code similar to this:

var nid;

function SendNotification_Click() {

 if (nid == null) {
 nid = SP.UI.Notify.addNotification(
"My New notification Click Me", true);
 }
}

function hideNote_Click() {
 SP.UI.Notify.removeNotification(nid);
 nid = null;
}

Dialogs
Another addition in SharePoint 2010 is the Dialog framework. For the most part, this is
encapsulated in the functionality exposed by the SP.UI.Dialog and SP.UI.ModalDialog
classes. Although the notifications and status bar functionality is included in the SP.js file,
the dialog framework code is included in the SP.UI.Dialog.js file. To get IntelliSense
support in Visual Studio when writing JavaScript that targets the dialog framework, add
the following reference element to the JavaScript file:

http://msdn.microsoft.com/en-us/library/ff408240.aspx
http://msdn.microsoft.com/en-us/library/ff408240.aspx

Chapter 4 Client Object Model 77

P
a

rt
 I

I

/// <reference path="C:\Program Files\Common Files\Microsoft Shared\Web
Server Extensions\14\TEMPLATE\LAYOUTS\SP.UI.Dialog.debug.js" />

Showing a modal dialog is a relatively straightforward affair. First, we create
a DialogOptions object, and then we call the showModalDialog method of the
SP.UI.ModalDialog object, as this sample shows:

function ShowDialog_Click() {

 var options = {url: ‘http://www.chaholl.com’,tite: 'My Dialog',
 allowMaximize: false,showClose: true,
 width: 150,height: 150,
 dialogReturnValueCallback: SendNotification_Click};
 var did = SP.UI.ModalDialog.showModalDialog(options);
}

In this sample, we’re redirecting to an Internet page for the sake of simplicity. In
a real-world application, we’d create a custom page that implemented the required
functionality. In Chapter 9, you’ll see examples of custom dialogs when we build setting
pages for service applications.

The important thing to note about the DialogOptions object is the
dialogReturnValueCallback property. This contains details of a callback method that will
be called when the dialog is closed. In this callback, we can write code to pick up the dialog
result and perform any necessary actions. In this simple example, we’ve generated a
notification using our notification sample code.

Summary
This chapter has shown how the Client Object Model can be used to create, update,
and delete SharePoint data. With three variants, the Managed Client Object Model, the
Silverlight Client Object Model, and the JavaScript Client Object Model, the SharePoint
platform provides a great deal of flexibility when it comes to creating rich user interfaces.
We also looked at how JavaScript can be used to create and manage a number of useful
user interface elements such as dialogs and status notifications. As you get to know the
SharePoint 2010 user interface, you’ll see these techniques being used frequently by
the platform itself.

This page intentionally left blank

CHAPTER

79

InfoPath Forms Services5
SharePoint is a tool that’s been designed to be usable by nontechnical users. One of the key
design tenets is the notion that nontechnical users should be able to create basic web-based
solutions using the web user interface and applications from the Microsoft Office suite.
Although Microsoft Word and Excel undoubtedly have their place in SharePoint application
design, when it comes to creating data capture forms, a more tailored tool is available.

The primary goal of InfoPath 2010 is to make it easy for nontechnical users to create
forms that can be used to capture user input. Forms can be completed offline using the
InfoPath client application, or, by using InfoPath Forms Services in SharePoint 2010, InfoPath
forms can be rendered as web pages. In effect, coupling InfoPath 2010 with InfoPath Forms
Services in SharePoint 2010 allows nontechnical users to create web-based data capture
applications using a user interface that is familiar to users of other Office suite applications
such as Word and Excel.

In this chapter, we’ll look at how and where you can use InfoPath forms as well as
covering the key features of the product.

InfoPath Overview
From a technical perspective, InfoPath is an XML-based editor. Ultimately, an InfoPath
form is an XML style sheet that makes use of XML-based data both for populating the form
and for retrieving data from external data sources. For the most part, the bare bones XML
functionality is hidden from the end user. However, as we take a closer look at the features
available, you’ll begin to see a few telltale signs. When we move on to look at creating code
behind our InfoPath forms, you’ll see how the application hangs together.

InfoPath Forms Services
Introduced in MOSS 2007, InfoPath Forms Services allows forms created using the
InfoPath client application to be rendered as HTML, allowing users to complete forms
without having the client application installed.

80 PART II Presentation Layer

Most services in SharePoint 2010 are implemented as service applications and are
configured via the Manage Service Applications option in Central Administration. InfoPath
Forms Services works a bit differently and can be configured as follows:

 1. Open SharePoint Central Administration.

 2. Select General Application Settings from the Central Administration pane on
the left:

 In the InfoPath Forms Services section, you’ll see various configuration links.
(In-depth coverage of each of these options is outside the scope of this chapter;
for more information, see http://technet.microsoft.com.) Generally speaking,
the default configuration is appropriate for most situations. The Manage Form
Templates and the Manage Data Connection Files options are useful for allowing
you to manage form templates and connections.

 To enable InfoPath Forms Services within a web site, you must enable the SharePoint
Server Enterprise Site Collection features at the site-collection level. To add these
features, take the following steps:

 3. From the Site Actions menu, select Site
Settings.

 4. In the Site Collection Administration section,
click Go To Top Level Site Settings.

http://technet.microsoft.com

Chapter 5 InfoPath Forms Services 81

P
a

rt
 I

I

 5. In Site Collection Administration, choose Site Collection Features. If it’s not
already activated, click the Activate button next to SharePoint Server Enterprise
Site Collection Features.

BrowserForm Web Part
Rendering of InfoPath forms in the web browser is carried out by the new BrowserForm
web part. So that we can see this in action, we’ll create a basic Hello World InfoPath form.

 1. Using SharePoint Designer, create a new blank web site named Chapter5.

 2. Follow the preceding steps to ensure that InfoPath Forms Services is enabled at the
Site Collection level.

 3. From the Site Objects pane, select Lists and Libraries, and then select Document
Library from the New section of the Lists and Libraries tab on the ribbon. Create
a new Form Library named MyForms, as shown:

 4. Open InfoPath Designer 2010, click on the File menu to see the backstage area,
choose New, and then click the Blank form icon, as shown:

82 PART II Presentation Layer

 5. Click Design This Form to create a new form template.

 6. Change the title to Hello World:

 7. To publish the form to SharePoint, open the File menu to return to the backstage
area. Click Publish Your Form to view the publishing options.

 8. Select Publish Form to a SharePoint Library.

 9. When prompted to save the form, save a copy to a location on the local file system.

 10. In the Publishing Wizard dialog, enter the URL of the blank SharePoint site that we
created earlier, as shown. Click Next to move to the next step.

Chapter 5 InfoPath Forms Services 83

P
a

rt
 I

I

 11. For the purposes of this simple demonstration, we’ll publish the form as a template
for the form library that we created earlier. Select Form Library from the list of
options and ensure that the Enable This Form To Be Filled Out By Using A Browser
Checkbox is checked. Click Next to move to the next step.

 12. Select Update The Form Template In An Existing Form Library and then select the
MyForms library from the list. Click Next to move to the next step.

84 PART II Presentation Layer

 13. In this simple demo, we’re not collecting any data or using any parameters. Click
Next to move to the final step of the wizard, and then click Publish to publish the
form to SharePoint.

To illustrate the use of the BrowserForm web part, we’ll add the web part to the home
page of our blank site and then configure it to pick up the Hello Word form that we’ve
published.

 1. Using the web browser, navigate to the home page of the blank site that we created
earlier (http://<YourServerName>/chapter5/default.aspx). From the Site Actions
menu on the ribbon, choose Edit Page.

 2. In the Left section, click the Add a Web Part link and then, in the web part selector
that appears at the top of the page, select the Office Client Applications category,
as shown:

 3. Select the InfoPath Form Web Part, and then click Add at the far right of the
window to add it into the left zone of the page.

 4. Click the Click Here To Open The Tool Pane link in the InfoPath Form Web Part
section of the page.

 5. From the List or Library drop-down, select MyForms. The Content Type and Views
drop-downs will be populated automatically. Click OK to commit the changes.

New in

2010

http://<YourServerName>/chapter5/default.aspx

Chapter 5 InfoPath Forms Services 85

P
a

rt
 I

I

 6. The demonstration InfoPath form will now be displayed on the page, as shown
next. Click Stop Editing from the ribbon to exit design mode.

86 PART II Presentation Layer

In this simple example, you’ve seen how to create an InfoPath form and use it within
a web part page. In the examples that follow, we’ll delve further into the functionality of
InfoPath. However, as you’ll see, the publishing mechanism remains pretty much the same
regardless of the type of form you’re creating.

Using InfoPath Forms in SharePoint
In SharePoint applications, InfoPath forms are used in four main ways: to create form
templates, custom forms for SharePoint lists, document information panels, and workflow
forms.

Creating Form Templates
SharePoint form templates are similar to forms used by other Office applications such as
Word and Excel. Using the InfoPath client, you create form templates that are used for a
SharePoint document library. As users complete the form and submit the data to SharePoint,
the form is stored in the document library in the same way a Word document or any other
content would be stored.

The main benefit in using InfoPath in this context as opposed to Word is that, although
the InfoPath form can be completed using the InfoPath client application, for users who
don’t have the client application installed, the form will be automatically rendered for
completion in the browser. Another key benefit is that the individual data items captured in
an InfoPath form can be bound to columns in the document library. Although this is also
possible using other Office applications, with InfoPath it’s a bit more transparent.

NOTE In SharePoint 2010, you can install Office web applications so that a web-based version of
applications such as Word and Excel will be available for use via the web browser if a user doesn’t
have the client application installed. In this case, using a Word template would also allow users to
complete forms within the browser.

In the preceding example, you learned how to create a basic form and publish it to a
form library. In effect, we created a form template that SharePoint can use to create new
documents for storage within the MyForms library. To see this working, navigate to the
MyForms library, open the Documents tab in the ribbon, and select New Document. You
can see that our InfoPath template is displayed in a new page. Click Save and then enter
MyTestFile as the filename. Click Close to return to the MyForms document library. You
can see that a new document named MyTestFile has been added to the library.

Let’s take a look at a more in-depth example of this type of form to see how you can
capture data in InfoPath and save it within specific columns in SharePoint. In this example,
we’ll create a custom form that can be used by employees to request demonstration
equipment. We’ll create a new form library for this example.

 1. Click Documents from the menu on the left and then select Create. Add a new
Form Library and name it Demonstration Equipment Requests.

Chapter 5 InfoPath Forms Services 87

P
a

rt
 I

I

 2. Open InfoPath Designer. In the New section of the backstage area, select
SharePoint Form Library and then click Design This Form.

 3. Change the form title to Demonstration Equipment Request, the top section title to
Customer Details, and the bottom section title to Equipment Details, as shown here:

88 PART II Presentation Layer

 4. Before we add data entry controls to the page, we’ll define the data structure for
our form. Behind the scenes, the data structure is defined as an XML schema. In
the Fields pane on the left side of the page, right-click the myFields node and then
select Properties from the context menu. Change the Name to EquipmentRequest.

 5. In the Actions section, click Add
Field. Create a new field of type
Group and type the Name as
Customer. Repeat this step to
create another group named
Equipment.

 6. Select the Equipment node and
then click Add Field. Add a group
node and type the Name Item;
however, this time check the
Repeating checkbox, as shown:

 7. Now we can begin to add nodes
for our individual fields. Within
the Customer group, add the following fields:

Name Type Data Type

CustomerId Field (element) Whole Number (integer)

CompanyName Field (element) Text (string)

AddressLine1 Field (element) Text (string)

AddressLine2 Field (element) Text (string)

City Field (element) Text (string)

StateProvince Field (element) Text (string)

PostalCode Field (element) Text (string)

 8. Within the Item repeating group, add the following fields:

Name Type Data Type

ProductNumber Field (element) Text (string)

ProductName Field (element) Text (string)

StandardCost Field (element) Decimal (double)

ListPrice Field (element) Decimal (double)

Quantity Field (element) Whole Number (integer)

LineTotalCost Field (element) Decimal (double)

LineTotalValue Field (element) Decimal (double)

Chapter 5 InfoPath Forms Services 89

P
a

rt
 I

I

 9. In the Equipment group, add the following fields:

Name Type Data Type

TotalCost Field (element) Decimal (double)

TotalValue Field (element) Decimal (double)

 10. After all fields have been added, the data structure should look as shown next. If
any fields are not in the correct location, right-click the wayward field and select
Move from the context menu to relocate the field within the data structure.

 We can now start adding controls to capture data for our fields. The design
experience in InfoPath is very much data-led. When we define the data source
first, creating a user interface is often a case of simply dragging the appropriate
data elements onto the page. InfoPath Designer automatically inserts an
appropriate input control that is bound to the correct field.

90 PART II Presentation Layer

 11. In the Customer Details section, select the cells that are underneath the title, and
then, from the Layout tab of the ribbon, select Merge Cells. Repeat this step for the
Equipment Details section. The revised form should look as follows:

 12. Drag the Customer group element into the Customer Details section of the form.
InfoPath Designer will automatically add text boxes for each field together with
labels for the field name. Rather than having the controls laid out sequentially on
the page, we can reformat them into a table by converting the section control into
a Controls in Layout Table control. Select the Section control, and from the
Properties menu in the ribbon, select Change Control | Controls in Layout Table.

 13. Although our layout table looks much tidier than the standard section control
layout, we no longer have field labels. We can add these in by selecting a control
within the layout table and then choosing Insert Left from the Layout tab in the
ribbon. To get the name of the field, place the cursor over the adjacent text box
control; this will show the field element to which the control is bound. Using this
technique, add in appropriate labels for each field.

 14. Tables in InfoPath can be resized in much the same way as they are changed in
Word and Excel: simply drag the edges of the columns to the appropriate size.
Using this method, resize the table so that all data can be clearly seen as shown:

Chapter 5 InfoPath Forms Services 91

P
a

rt
 I

I

Now that we’ve added controls to capture details of the customer that’s requesting
demonstration equipment, the next section of our form allows users to enter details of the
equipment required. Since more than one piece of equipment may be required by a customer,
we’ve added a repeating Item section to our data set. We can allow users to add as many
items as they need by creating a repeating table on the form.

 1. Drag the Item repeating Group onto the Equipment Details section of the form.

 2. Select Repeating Table from the pop-up list of options.

Adding Formulae to Fields Our Item data element contains two columns, LineTotalCost
and LineTotalValue, that should be calculated based on the values entered in other columns
in the row. To add formulae for these fields, take the following steps:

 1. Select the Line Total Cost text box in the repeating table control. From the
Properties tab in the ribbon, select Default Value.

 2. In the Field Or Group Properties dialog, click the fx button next to the Default
Value text box.

 3. Using the Insert Field or Group button to select the appropriate fields, add this
formula, as shown next: Quantity * StandardCost.

 4. Repeat the process for the Line Total Value text box. This time add this formula:
Quantity * ListPrice.

 5. To prevent users from entering values in these calculated fields, we need to change
them from text boxes to labels. Click the Change Control option from the Properties
tab on the ribbon, and then select CalculatedValue.

Publishing a Form Template to SharePoint Our basic Demonstration Equipment
Request form is now complete. To publish it to SharePoint and use it for capturing data
for our Demonstration Equipment Request library, take the following steps:

 1. As we did earlier, from the backstage area, click Publish Form To A SharePoint
Library. Type the server URL as http://<YourServerName>/Chapter5. When
prompted, save a copy of the form named EquipmentRequest.xsn to the local
file system.

92 PART II Presentation Layer

 2. Select Form Library from the list of options, and then select the Demonstration
Equipment Requests library. Click Next to move to the next step of the wizard.

 3. When we published our simple form earlier, we skipped this section. Since we want
to capture data from our equipment request form, we need to specify which fields
we want to include as columns in our document library. By clicking the Add button
in the upper section of the form, add all fields within the Customer group to the
library, as shown:

 4. Click Next and then click Publish to add the form to our library.

Using the browser to navigate to the Demonstration Equipment Requests library, you
can see that by clicking the New Document button on the Documents ribbon, our InfoPath
form is displayed, allowing us to enter details as expected. To store the form in the document
library, we must use the Save option and name the form. By performing this step, we’re
saving a copy of the form in the document library and at the same time copying the field
values that we specified earlier into columns.

Creating Custom Forms for SharePoint Lists
Another use of InfoPath forms, and one that’s become more prevalent with SharePoint
2010, is in the creation of custom new and edit forms for SharePoint lists. Custom forms
differ from the form templates that we saw earlier: the form itself is not stored in the

Chapter 5 InfoPath Forms Services 93

P
a

rt
 I

I

library. Since custom forms can be used only with lists, only the field data that we elect to
include is copied to columns in the list as opposed to the entire completed form. Let’s
create a custom form for a SharePoint list:

 1. Using SharePoint Designer, create a new custom list named MyCustomList. From
the Lists and Libraries navigator, double-click the MyCustomList icon to manage
the settings for the list.

 2. In the List Settings tab of the ribbon, select Design Forms in InfoPath | Item. InfoPath
Designer will then open, displaying a basic template for capturing list item data.

 3. Additional fields can be added using the Add Field link in the Fields pane. When
you add a field to the form, a column is also added to the underlying list to store the
captured data. For example, we could add a field named Description. Once the form
is published, a new column named Description will be added to our custom list.

 4. To publish the customized form, click Info in the left pane and then click the
Quick Publish button in the backstage area:

Creating Document Information Panels
When creating Office documents for use with SharePoint, certain metadata is required
by default, such as a title for the document and any relevant tags. Along with the default
metadata that’s required by the Document content type, you can add additional metadata
that will be stored as specific columns in the document library. This data is captured using
a Document Information Panel, and customization of such a panel is another important
use of InfoPath.

 1. From the Site Objects pane in SharePoint Designer, select Lists And Libraries. Add
a new Document Library and name it Purchase Orders.

94 PART II Presentation Layer

 2. Double-click the Purchase Orders icon to manage the settings for the document
library. In the Settings section, check the Allow Management Of Content Types
checkbox, as shown. Click the Save icon in the upper-right corner of the Designer
window to persist the changes.

 3. From the Site Objects pane, select Site Columns. Add a new column of type
Currency. Type the Name of the column as Amount and add it to the Custom
Columns group.

 4. Add another column of type Single Line of Text. This time type the name
Customer Reference. Again, add it to the Custom Columns group.

 5. Click the Save icon in the upper-right corner of the Designer window to persist the
changes.

 6. From the Site Objects pane, select Content Types, and then, from the New section
of the Content Types ribbon, click Content Type. Type the Name as Purchase

Order and the parent content type to Document, as shown next. Add the content
type to the Document Content Types group.

Chapter 5 InfoPath Forms Services 95

P
a

rt
 I

I

 7. Double-click the Purchase Order content type to manage its settings, and then click
the Edit Columns button in the ribbon.

 8. Click the Add Existing Site Column button to add the Amount and Customer
Reference columns that we created earlier. Click the Save icon to persist the
changes.

 9. With the Purchase Order content type selected, from the Actions section of the
Content Types ribbon, select Apply to List. Select the Purchase Orders document
library from the Lists and Libraries picker.

96 PART II Presentation Layer

NOTE We’ve touched on a few key concepts of the SharePoint data structure in the course of setting up
this example. For more details on content types and site columns, see Chapter 13.

 10. Configuring document information panels can be done only from a browser-based
user interface. Using the browser, navigate to the Purchase Orders document
library. From the Library tab of the ribbon, select Library Settings.

 11. In the Content Types section, click the Purchase Order content type and then
select the Document Information Panel settings link.

 Document Information panels are configured at the content type level. In effect, a
document information panel is responsible for providing a user interface to capture
and display data that is stored in the columns that are referenced by the content
type. In the case of our example, we added two additional columns: Amount and
Customer Reference.

 12. Click the Create A New Custom Template link. This will open InfoPath Designer,
where we can customize the system generated Document Information panel.

 13. Select the Customer Reference text box, and then from the Properties tab of the
ribbon, select Change Control | Combo Box.

 14. Click the Edit Choices button, and using the Add button, enter a few sample
customer reference values.

 15. To publish the Document Information panel to SharePoint, click File to enter
the backstage area, and then select Publish Your Form. When prompted, enter
a filename on the local file system to save the form before publishing.

If you navigate to the Purchase Orders document library, you can now select New
Document | Purchase Order from the Documents tab to see the fruits of our labor. A blank
Word document is shown with our custom information panel at the top of the page.

Creating Workflow Forms
The final use, and one that I’ll cover in more detail in Chapter 11, is the creation of
workflow forms. Often, as part of a workflow process, you’ll need to capture additional user
input. InfoPath, and particularly the ability of SharePoint Designer to create appropriate
InfoPath forms automatically, makes it easy to capture this additional information.

Accessing Data in InfoPath Forms
One of the powerful features of InfoPath, especially when it comes to generating browser-
based forms, is the ability to connect to additional data sources. We can reuse our earlier
Demonstration Equipment Request form to see this in action.

 1. Open the EquipmentRequest.xsn file from the local file system. Our form has two
sections: the top section captures customer details and the bottom section captures
a list of products. Rather than manually keying in customer details, we’ll make use
of a SQL Server database to look up the required information and automatically
populate the fields.

Chapter 5 InfoPath Forms Services 97

P
a

rt
 I

I

TIP For demonstration purposes, SQL connections are easiest to use. However, their usefulness within
InfoPath forms is pretty limited. Passing parameters generally requires custom code, as you’ll see
later. As a general rule, the best way to communicate with external data sources is to create a
custom web service interface. InfoPath can then parse the Web Service Definition Language (WSDL)
and create fields for any parameters that may be required.

 To provide some sample data to work within our various examples, we need to
download and install the SQL Server 2008 sample databases, which can be found
at www.codeplex.com/MSFTDBProdSamples. Our examples make use of the
AdventureWorksLT database installed on the local instance of SQL Server 2008.

 2. At the bottom of the Customer Details section, add a button. Buttons and other
controls can be found in the Controls section of the Home ribbon. Type the button
label as Find Customer.

 3. To add a data connection, switch to the Data tab on the ribbon, and then click
From Other Sources | From Database, as shown:

 4. Click Select Database to select from the data sources that are available on the
current machine. If one is not available for the AdventureWorksLT database, click
New Source to add one. Select the Customer table when prompted. Once the data
connection has been made, the columns will be listed, as shown next:

www.codeplex.com/MSFTDBProdSamples

98 PART II Presentation Layer

 5. Since we want to use a query to extract data from more than one table, click Edit
SQL and enter the following SQL statement:

Select C.CustomerID,
 C.CompanyName,
 A.AddressLine1,
 A.AddressLine2,
 A.City,
 A.StateProvince,
 A.PostalCode
From SalesLT.Customer as C
Inner Join SalesLT.CustomerAddress as CA
On CA.CustomerID=C.CustomerID
Inner Join SalesLT.Address as A
On A.AddressID=CA.AddressID

 6. Click Next. Leave the Store A Copy Of The Data In The Form Template checkbox
unchecked. Click Next and then uncheck the Automatically Retrieve Data When
Form Is Opened checkbox. Set the connection name to Customer and then click
Finish to create the connection.

 7. We’ll make use of the Company Name field to search for customers. All other fields
will be populated automatically from the search results. To make all other fields
read-only, select the field and then from the Properties tab of the ribbon, check
the Read-Only option in the Modify section. Repeat this process for all fields in the
Customer Details section other than the Company Name field.

 8. We’ll display our search results on a separate page. From the Page Design tab’s
Views section, select New. Name the new view Customer Search Results.

 9. Type the title of the new view as Customer Search and then, from the Fields pane,
in the Fields drop-down, select Customer (Secondary). (The Fields drop-down is
something of a misnomer. In reality, the drop-down contains a list of the data
connections that are available to the current form.)

 10. Drag the d:Customer repeating group onto the Customer Search form. Select
Repeating Table as the control type. When producing a schema from a SQL
statement, InfoPath also adds columns for both sides of a join relationship. As
a result, three redundant columns are named CustomerID1, AddressID, and
AddressID1. To remove these from our repeating table, simply select the
offending columns and choose Delete | Columns from the Layout tab.

 11. Since we don’t want the user to be able to edit the contents of these fields, using
the Change Control button on the Properties menu that we demonstrated earlier,
change the controls to Calculated Values.

 12. The final item that we need to add to our search form is a button to select the
correct customer. Place the cursor in the first column of the table and then, from
the Table tab in the ribbon, click Insert Left.

 13. Add a button in the data area of the new column and type the label as Select. The
completed form should look like this:

Chapter 5 InfoPath Forms Services 99

P
a

rt
 I

IData Connection Libraries
When we added our data connection, the connection details were stored along with the
InfoPath form. This technique is known as “embedding connection details.” In simple
cases, this approach works well; however, in larger developments, such a technique may
not be appropriate. Often multiple environments exist for testing, staging, and production.
Embedding connection details within a form template would require the template to be
changed for each environment. Also, if an embedded connection contains user credentials,
these are stored as plain text within the file.

To get around problems like this and to promote the reuse of administrator controlled
data connections, InfoPath can save data connections to a data connection library. To
create a new data connection library, take the following steps:

 1. Browse to the home page of the sample site that we created earlier:
(http://<YourServerName>/Chapter5).

 2. From the Site Actions menu, select More Options, and then, from the Create
dialog, select Data Connection Library. Name the new library MyConnections.

We can now publish the data connection from our Demonstration Equipment Request
form by taking the following steps:

 1. In InfoPath Designer Fields pane, click the Manage Data Connections link.

 2. Select the Customer data connection and then click Convert To Connection File.

 3. Using the Browse button on the Convert To Data Connection dialog, select the
MyConnections Document Library and save the file as Customer.udcx.

 4. Click OK to save the Universal Data Connection (UDC) file.

Modifying UDC Files
By default, our data connection is configured to use Integrated Windows Authentication.
This means that connections to the data store are made using the credentials of the user
viewing the form. There are, however, a few problems with this approach. Probably the
most obvious is that all users accessing the form must have permissions to the underlying
data store. Another problem that isn’t so apparent is what’s known as the “double-hop
issue.” NT LAN Manager (NTLM) doesn’t allow credentials to be delegated by an
intermediary system. This is a problem when using InfoPath Forms Services, because the
credentials are captured on the user interface tier, but it is the middle tier, the InfoPath

100 PART II Presentation Layer

Forms Services layer, that actually connects to the data source. Since the middle tier can’t
impersonate the user connected to the user interface tier, it’s not possible to connect to a
data source on a separate server using Integrated Windows Authentication.

You can, however, deal with this problem in a few ways: One way is to make use of the
Secure Store Service (see Chapters 12 and 15). The other way is to embed a username and
password in the connection details. Although using the Secure Store Service is the most
secure option, for the purposes of this demonstration, we’ll use embedded credentials.

 1. Create a login on the SQL server that contains the AdventureWorksLT database.
Create a SQL login named InfoPathDemo with a password of password. Make sure
that the server is configured to use Windows and SQL authentication.

 2. With the login created, grant it read permissions on the AdventureWorksLT
database. Check that it can connect by using the Connect option in SQL Server
Management Studio.

 3. UDC files are stored as plain text files containing XML in the SharePoint document
library. However, by opening a file with Visual Studio 2010, the XML Designer
makes it easier to see what’s going on. Navigate to the MyConnections document
library, and then click the Check Out button on the Documents tab to check out
the Customer data connection file.

 4. From the Library tab, click the Open With Explorer button as shown:

 5. The document library will be opened in Windows Explorer. Open the Customer.
udcx file with Visual Studio and find the udc:ConnectionString element.

 6. Change the connection string to include the following:

Provider=SQLOLEDB.1;
Persist Security Info=True;
Initial Catalog=AdventureWorksLT;
User Id=InfoPathDemo;Password=password;
Data Source=<YourServerName>;

 7. Save the file and then switch back to the MyConnections document library and
check in the updated document.

 8. Before the connection string can be used, a system administrator must explicitly
approve embedded credentials in connection files. Navigate to Central
Administration | General Application Settings | Configure InfoPath Forms
Services. Check the Embedded SQL Authentication checkbox.

Chapter 5 InfoPath Forms Services 101

P
a

rt
 I

I

Our connection file is now set up to use embedded connection credentials and will
work properly for all users accessing it.

NOTE Within the UDC file is a udc:Authentication element that’s commented out by default. To configure the
connection to use Secure Store Service for authentication, uncomment this section. The AppId is the
Target Application Id and the CredentialType will either be NTLM for Windows authentication or SQL for
SQL Authentication. For more details on configuring this element, see http://msdn.microsoft.com.

Responding to Events in InfoPath Forms
Carrying on with our Equipment Request form, let’s look at how we can hook up the
buttons on the form using a few methods that follow.

Using the Rules Engine
The easiest way to handle events in an InfoPath form is to use the built-in rules engine.
Three different types of Rules can be applied to a control or field:

Validation• Allows users to add a validation formula to a field or control. Where
the validation formula does not return true, a user-defined message is displayed.

Formatting• Formatting works a bit like conditional formatting in Excel. The user
can define a condition or formula that must evaluate to true or false. If the formula
evaluates to true, the format is applied.

Action• Within InfoPath most event handling is done using Action rules. By using
Action rules, a user can perform a series of actions when a specified condition
occurs. Some examples of a condition that can trigger an action rule are Field
Changed and Button Clicked.

We’ll make use of an Action rule to switch to our Customer Search view when the Find
Customer button is clicked on our form:

 1. If you haven’t already done so, switch back to the default view: in the Page Design
tab of the ribbon, select View 1 (default) from the View drop-down. Then click the
Find Customer button.

 2. From the Properties tab’s Button section of the ribbon, select Rules. You’ll see the
Rules pane on the right side of the page.

 3. Select New | Action from the Rules pane, and then type the rule name as Do

Customer Search.

 4. In the Run These Actions section, click Add |Switch Views, and then select
Customer Search Results from the list of views.

 5. As well as showing our search results page, we need to perform the actual query.
This time select Add | Query For Data, and then select the Customer data
connection from the list.

We can now publish this form and see the results using the browser. When the user
clicks the Find Customer button, a list of customers is displayed, allowing the user to select

http://msdn.microsoft.com

102 PART II Presentation Layer

an appropriate record. The next step is to copy the selected customer details into our main
form and then switch back.

 1. In the Page Design tab of the ribbon, switch to the Customer Search Results view,
and then highlight the Select button.

 2. From the Properties tab on the ribbon, click Add Rule | When This Button is
Clicked | Set A Field’s Value.

 3. In the Rule Details dialog, set the Field to the CompanyName field on the Main
data source, as shown. The selector can be accessed by clicking the down-arrow
button at the right of the Fields text box.

 4. Set the Value to the CompanyName
field of the Customer data source.
Again this can be done by clicking the
down-arrow button to the right of the
text box. Click Insert Field Or Group
on the Insert Formula dialog that
appears to show the selector.

 5. Repeat this process to copy all fields from
the d:Customer group into the Customer
group of the main data source. Rather
than using the Add Rule button in the
ribbon, which will create a new rule,
you can add an additional action to the
current rule by choosing Add | Set A
Field’s Value from the Rules pane.

Chapter 5 InfoPath Forms Services 103

P
a

rt
 I

I

 6. After all the field values are copied, switch back to default view. From the Rules
pane, click Add | Switch Views and set the view to View 1.

We can now publish the updated form and navigate to the document library to see the
fruits of our labor. This time, when you click Find Customer and select a customer from the
list, the details are copied into our main form and the search view is hidden from view.

Adding Code-Behind
You may have noticed in our demonstration form that no matter what is entered in the
Company Name field, all companies are returned each time the Find Customer button
is clicked. Because we’re using a database connection to retrieve our customer details,
we don’t have the facility to pass in a parameter using the data connection interface in
InfoPath. However, behind the scenes, InfoPath exposes a full object model that allows
us to control practically all aspects of the data connection using managed code.

By adding a managed code event handler to our Find Customer button, we’ll
dynamically modify the SQL query that’s used to generate our search results.

NOTE Using managed code with InfoPath 2010 requires Visual Studio Tools for Applications. This feature
can be installed using the Office 2010 setup program. Under Microsoft Office InfoPath, select Visual
Studio Tools for Applications in the .NET Programmability Support group.

Before we start writing our custom event handler, we’ll modify the rules that we added
earlier to prevent the database from being queried twice.

 1. Click the Find Customer button and then in the Rules pane, delete the Query
using a data connection action: click the arrow to the right of the action and
choose Delete.

 2. From the Developer tab in the ribbon, click the Language button. Make sure the
Form template Code language is set to C#. (You can use VB, but the code in this
sample is written in C#.)

 3. Switch to the Properties tab, and then click the Custom Code button in the Button
section of the ribbon. The Visual Studio Tools for Applications interface will be
loaded and a stub method will be created to handle the click event for our button.

 4. Type the following code in the body of the stub method:

string xpath=@"/my:EquipmentRequest/my:Customer/my:CompanyName";
XPathNavigator nav = this.MainDataSource.CreateNavigator();
string companyName = nav.SelectSingleNode(xpath,this.NamespaceManager).Value;
DataSource customer = this.DataSources["Customer"];
AdoQueryConnection cnn = customer.QueryConnection as AdoQueryConnection;
string allItemsQuery = cnn.Command;
cnn.Command =allItemsQuery + " Where C.CompanyName like '%" + companyName + "%'";
cnn.Execute();
cnn.Command = allItemsQuery;

A few items in this code sample require some explanation—first, the xpath variable:
As mentioned earlier, InfoPath is an XML-based form designer. On the surface, this may

104 PART II Presentation Layer

seem trivial, since all developers are familiar with XML and the various objects in the .NET
Framework that can be used to work with XML. However, because InfoPath is completely
XML-based, things work a bit differently and it can take time to fully understand the
difference.

In traditional WinForms or ASP.NET programming, the presentation user interface
is separate from the data. Often, most of the code that we write involves either reading
data from or writing data to controls. Since the presentation layer in InfoPath is simply a
transformation of the data (that is, an XSLT transform of XML data), there is no presentation
layer to manipulate programmatically. Data is automatically bound to the appropriate controls.
If we were writing an ASP.NET application, we may retrieve the value of the CompanyName
text box by examining the Text property of the appropriate control; in InfoPath, there is
no such control and we retrieve the value of the CompanyName field by querying the data
model directly. The most common way to perform this query is to use XPath, and the xpath

variable stores the XPath expression that refers to the appropriate field.

TIP InfoPath Designer makes it easy to determine the XPath expression for a particular field. In the Fields
pane, right-click the required field and select Copy XPath from the context menu. The XPath expression
will be placed on the clipboard ready for use in custom code.

The next item that warrants some explanation is the DataSource object. The following
class diagram shows how data sources are defined by the InfoPath object model:

You’ll notice that all of the classes in this diagram are abstract. All data connections
are ultimately defined using XML schemas and other XML-based configuration data. At
runtime, InfoPath creates objects from these files that derive from the appropriate base
class. For example, in our code sample, we declare an object of type AdoQueryConnection
to allow us to modify the query for our database connection. In reality, the actual type of
this object is AdoQueryConnectionHost, which is an internal type that is created when the
connection details are deserialized.

Chapter 5 InfoPath Forms Services 105

P
a

rt
 I

I

NOTE Not all InfoPath forms can make use of managed code due to security restrictions in SharePoint.
Custom list template forms and workflow forms that are automatically generated using SharePoint
Designer can’t use managed code. When managed code is not available for a particular form type,
the Developer tab will not appear in the ribbon.

Now that our customer search function works properly, we can publish the form to
SharePoint and check out the results.

Summary
This chapter covered the main uses of InfoPath forms within SharePoint. You’ve seen how
nontechnical users can create custom forms using a user interface that’s similar to that of
other applications in the Microsoft Office suite. You’ve also seen how we, as developers,
can extend this basic functionality with managed code where required. By using advanced
functionality such as data connections, InfoPath can be used to build a complex user
interface for practically any data-driven business application. Furthermore, the user interface
can be customized easily by nontechnical users. From a development perspective, this is a
very powerful feature. Traditional development approaches mean that developers are often
called upon to make trivial changes to user interface elements such as field validation or
control layouts. By building a solution that leverages InfoPath, users are free to make these
changes themselves, freeing developers to focus on more in-depth customizations.

This page intentionally left blank

6
CHAPTER

107

Enterprise Content
Management

One of the greatest strengths of the Internet may also be its greatest weakness: Anybody can
create and publish new content. Without content, there would be no Internet; however,
without quality standards, there are no guarantees that content is accurate. Indeed, one of
the biggest problems facing Internet users is relevance. With so much to choose from, how
do we know which sources are reliable and relevant to us? A few answers to this problem are
discussed in Chapters 16 and 17, which deal with search and social computing. The point is
this: Creating content is easy, but because it’s so easy, maintaining quality standards is a bit
difficult.

We’ve touched on the Internet as an example of a global content free-for-all. However,
in many organizations, a similar effect is experienced when it comes to internal content.
With myriad Word documents and Excel spreadsheets scattered far and wide, it becomes
impossible to know which information is accurate and reliable. “Content management”
refers to managing web content, but when it comes to SharePoint, Enterprise Content
Management (ECM) is all about managing the creation of content and maintaining quality
standards throughout an organization. ECM relates to the management of all content
within an organization, from document management, to more traditional web content
management.

Managed Metadata
If only a few files are stored in a folder, it’s probably relatively easy for you to find what you
need—and this may be the case for a few thousand files in a hierarchical file system as well.
But if you’re talking about tens of thousands of files, or even millions of files, with many
more being added each day, then storing a file in the wrong place in the hierarchy can
make information practically impossible to find. The answer to such a problem is metadata,
which literally means data about data. SharePoint 2010’s new Managed Metadata service is
the core of many of the ECM improvements. By attaching metadata to content, you can use
the metadata to organize, index, and navigate to content automatically.

Chapter 17 covers the creation of metadata and its wider implications in more detail.
For now, it’s enough to know that metadata is an essential part of content management.

New in

2010

108 PART II Presentation Layer

Configuring the Managed Metadata Service
The Managed Metadata Service can be configured as follows:

 1. From Central Administration, select Manage Service applications in the Application
Management section.

 2. Select the Managed Metadata Service, and from the Operations section of the
Service Applications ribbon, select Manage. This will open the Term Store
Management Tool. Notice that the Taxonomy Term Store pane on the left side of
the page, and shown in the following illustration, displays the terms and term stores
that have been defined for the selected Managed Metadata Service application. The
root node—Managed Metadata Service—represents the service application.

 The lowest level of metadata definition is the term, which is a tag for all intents and
purposes. Terms can be hierarchically organized, as illustrated. Moving up from the
term is the term set, which groups terms into a logical set. One common use for a
term set is to provide a list of possible options; as shown in the illustration, the Page
Types term set lists possible terms for page types.

 Term sets come in two types: open, in which users can add terms, and closed, in
which all terms are predefined by a user with appropriate permissions. By using
these different types, you can create taxonomies or folksonomies (and a discussion
on the merits of each is presented in Chapter 17).

 3. Since we’ll make use of the demonstration terms shown in the illustration, we’ll add
them to the term store. Right-click the Managed Metadata Service node and select
New Group from the context menu. Enter Chapter 6 as the name for the group.

 4. Right-click Chapter 6, and then select New Term Set. Name the Term Set Page Types.

 5. Right-click Page Types, and then add new terms as shown in the illustration. Notice
how new blank terms are added automatically while you’re inserting terms, making
it easier to enter several terms at the same time.

Chapter 6 Enterprise Content Management 109

P
a

rt
 I

I

Managed Metadata Field
Taxonomies and folksonomies are covered in detail in Chapter 17; for now, however, you
should know that a taxonomy is a well-defined categorization scheme that can usually be
changed only by administrative users, whereas a folksonomy is a loosely defined scheme that
can be changed by users of the system.

Let’s look at how this data can be captured as part of our content creation process. The
primary user interface for capturing metadata published using the Managed Metadata
Service is the Managed Metadata field. By default, all content types that are derived from
the Page content type include a Managed Keywords field that makes use of the Managed
Metadata field type.

NOTE The Managed Keywords field is actually provisioned by a hidden taxonomy feature, which should
be enabled by default. However, at the time of writing, on SharePoint 2010 Beta 2, in certain
circumstances the feature isn’t enabled and therefore the column isn’t available. To remedy this
problem, you can manually enable the feature using PowerShell. (See Chapter 20 for details.)

To illustrate the use of the Managed Metadata field, we’ll create a new blank site.

 1. Using SharePoint Designer, create a new blank web site at http://<ServerName>/
Chapter6.

 2. From the Site tab of the ribbon, select Document Library | Document Library.
Name the new document library MyTaggedDocs.

 3. In the List Settings tab of the ribbon, click Administration Web Page from the
Manage section. (At the time of writing, Managed Metadata columns can’t be
added using SharePoint Designer.)

 4. In the Columns section of the Document Library Settings page, select Create
Column.

 5. Add a new column named Document Type of type Managed Metadata.

 6. Scroll down the page to the use a managed term set option. Using the navigator,
select the Page Types term set, as shown. Notice that you can select any term within
the term set hierarchy as the starting point for the field. Only the subset of terms
that are found below the selected term will be available for selection.

 7. Click OK to create the new column.

New in

2010

110 PART II Presentation Layer

In addition to being able to define metadata manually for content, you can configure
default metadata based on the location to which content is saved. For example, a document
library may contain folders for a number of customers. When a document is stored in a
particular folder, it may be desirable to attach a customer reference by default.

 1. Navigate to the MyTaggedDocs document library using the browser. From the
Documents tab, select New Document to add a new document to the library.

 2. Enter some sample text in the document, and then in the Document Properties
panel add the title MyTechnicalSpec.

 3. In Document type column, type Tech. Notice that as you type a list of suggestions
appear. In this case, the only suggestion is Technical Specification, which is selected
by default if you press return.

 4. Try to enter an invalid value, such as foo; notice that the invalid term is highlighted
as an error.

 5. Click the icon to the right of the Document Type text box. From the Select:
Document Type dialog, select the Technical Specification term, as shown.
Click OK to use the selected term.

 6. Click the Save icon in the upper-left corner of the screen to save the new document
to our MyTaggedDocs document library. Save the document as MyTechnicalSpec.
docx, and then close Word after the document has been saved.

To illustrate how default terms can be applied when documents are created, we’ll add a
few folders to our MyTaggedDocs library and then specify default terms for each folder.

Chapter 6 Enterprise Content Management 111

P
a

rt
 I

I

 1. From the Documents tab, select New Folder. Create a new folder and name it
Pricing Docs.

 2. Repeat the process to create another new folder named Product Descriptions,
as shown:

 3. From the Library tab on the ribbon, select Library Settings, and then select
Column Default Value Settings from the General Settings section.

 4. Select the Pricing Docs node from the Location To Configure tree on the left side.
Click the Document Type column, and then select the Use The Default Value option.

 5. In the Default Value text box, type Pricing. Again, notice how suggestions are
automatically generated as you type. Select Pricing Information, and then click
OK to store the default.

 6. Repeat this process to set a default value for Product Description.

Now navigate to the Pricing Docs folder in the MyTaggedDocs library. Add a new
document. This time, save the document without setting the Document Type value and
then close Word. Notice that the default value that we specified earlier has been applied.

CAUTION Default metadata is applied by attaching an event receiver to the appropriate document
library. Be careful not to remove the system-specified event receiver by accident when working with
custom receivers. For more information on event receivers, see Chapter 8.

Metadata Navigation
Filing hierarchies are great if you’re dealing with only a few items, but they’re not so good
as the number of items increases. Unfortunately, the hierarchy has to get more and more
complicated to enable things to be found. For example, you could start off with a folder
named Customers, with subfolders for each customer. In each customer subfolder, you could
store all correspondence for a given customer. This works well if you need to store only a few
documents, but what happens over time when the aggregate volume of correspondence
increases? The typical answer is to create date folders within the customer folder. But what
if the volume within a particular time period is still too high to make it easy to find what you
need? You could again subdivide the time period or maybe create subfolders for each type of
correspondence.

New in

2010

112 PART II Presentation Layer

The point is this: over time, hierarchies must continually get more complicated to make
it possible to find content. As they get more complicated, they become more targeted to a
particular search approach. In our example, what would happen if we wanted to retrieve
all the sales invoices created on a particular day for all customers? With the current folder
structure, this would be possible, but not exactly the most efficient content management
mechanism. At this point, the answer may be to create a new hierarchy that is easier to
understand, which is no mean feat by any measure, and is still targeted to a particular
search approach.

The answer to this dilemma is to create many virtual hierarchies, each targeted to a
particular search context. By using the Metadata Navigation functionality in SharePoint
2010, creating virtual hierarchies is a straightforward affair. Before Metadata Navigation
can be used, it must be enabled for a site.

 1. From the Site Actions menu, select Site Settings.

 2. In the Site Settings page, select Site Features and then click the Activate button for
the Metadata Navigation and Filtering feature, as shown:

 3. Navigate to the MyTaggedDocs library that we created earlier. From the Library tab,
select Library Settings. Notice that the General Settings section now contains two
additional options: Metadata Navigation Settings and Per-location View Settings.

 4. Click the Metadata Navigation Settings link, and then from the list of Available
Hierarchy Fields, add the Document Type field to the list of Selected Hierarchy Fields.

 5. From the Available Key Filter Fields list, add the Created By field to the Selected
Key Filter Fields list.

 6. Click OK to apply the changes, and then navigate to the MyTaggedDocs library.

By configuring Metadata Navigation for our document library, a hierarchy browser is
now visible on the left side of the page. From the hierarchy, we can select from the list of
folders or the Managed Metadata terms that we specified for the Document type field. Also,
by adding Created By as a Filter Field, we can enter a username to show only the documents
that were created by a particular user. Combining these two techniques makes it easier to
find data using a combination of virtual hierarchies and filtering.

Content Organizer
Another use for metadata is to organize content automatically. One of the problems of a
hierarchical filing system is that documents must be placed in the correct place for the
system to work. By defining rules that determine where a document should be saved, the
Content Organizer feature in SharePoint 2010 allows users to save all content to a drop-off
location; SharePoint will automatically route it to the correct place.

To configure the Content Organizer feature, take the following steps:

 1. From the Site Actions menu, select Site Settings and then click the Manage Site
Features link. Activate the Content Organizer feature, as shown:

New in

2010

Chapter 6 Enterprise Content Management 113

P
a

rt
 I

I

 2. Using the Navigate Up button that appears next to the Site Actions menu, navigate
back to the Site Settings page. The Site Administration section now shows two
additional options: Content Organizer Settings and Content Organizer Rules. Also,
a Drop-Off Library has been automatically created within the site. The first option,
Content Organizer Settings, allows you to configure the settings for the Content
Organizer feature. For this simple demonstration, the default settings will be
sufficient. (You can find out more about the configuration settings at http://
technet.microsoft.com.)

 3. Click the Content Organizer Rules link to display the list of configured rules. One
thing that may not be immediately apparent is that a Content Organizer Rule is
implemented as a Content Type and the collection of rules are stored in a custom
list defined at the site level named RoutingRules. To add a new rule, click the Add
New Item icon.

 4. Name the new rule Move Product Specs. In the Submission’s Content Type section,
choose Document as the content type, as shown. When it comes to defining rules,
bear in mind that each rule is bound to a specific content type. In the preceding
samples, we added a column to our MyTaggedDocs library but didn’t create a
specific content type; as a result, we can’t use our custom Managed Metadata field
to create a rule. Instead, we’ve selected the Document content type, allowing the
rule to execute against all content that inherits from the Document content type.

http://technet.microsoft.com
http://technet.microsoft.com

114 PART II Presentation Layer

 5. In the Conditions section, select the Managed Keywords property; then, in the
Value box, enter Product. Select the Product Description term when it is suggested.

 6. Set the Target Location to the Product Descriptions folder in the MyTaggedDocs
document library that we created earlier. Click OK to save the new rule.

To see our rule in action, navigate to the automatically created Drop-Off Library, and
then create a new document by selecting New Document from the Document tab on the
ribbon. Enter some sample text and a Title for the document, and then, in the Managed
Keywords text box, enter the Product Description term. Save the document to the library.
Notice that as each document is being saved, the status messages in Word indicate that the
Content Organizer is processing. Once the save process has completed, the final location
of the document will be shown in the Location text box at the upper-right corner of the
Document Information panel:

Large Libraries
In SharePoint 2007, the recommended maximum number of items in a single folder was
2000, and while the recommended maximum number of documents in a single library was
5 million, achieving this limit could really be done only by having multiple nested folders
of around 2000 documents each. With SharePoint 2010, some practical limitations still
exist regarding what can be done in lists and libraries, but these limits have been increased
significantly. For example, the maximum number of items that can be shown in a single
view is now 5000 instead of 2000, and the maximum number of documents in a library has
doubled to 10 million. Furthermore, with thoughtful use of metadata, your focus on creating
a perfect document hierarchy isn’t such a critical issue to the design of a SharePoint solution.

Achieving a document library with many millions of items is much easier in SharePoint
2010. The number of items that can be displayed in a view has increased to 5000, and by
using metadata navigation, you don’t need to create myriad folders just to stay within the
5000-item limit.

Document Management
The introduction to this chapter highlighted the fact that SharePoint’s ECM functionality
covers the management of all content within an organization, from documents such as
Excel spreadsheets and Word documents, to web-based content and the functionality
traditionally provided by web content management systems. In this section, we’ll look
at the document management–specific aspects of SharePoint ECM.

Content Management Users
A few elements are common to any content management system, and these can be more
easily explained by considering the three main users of content management systems:

Chapter 6 Enterprise Content Management 115

P
a

rt
 I

I

Content Creators Content creators are users who create the content that is stored within
the system. In an organization, these users typically cover a wide range of disciplines and
use a variety of tools to create the content they will publish. Typically, content creators are
nontechnical users who are experts in their own specific fields.

Readers Readers are users that consume the content published by the content
management system. These readers may be anonymous or identified and may be
subdivided into particular groups or audiences for content targeting purposes.

Editors/Administrators Editors and administrators are responsible for the management
of content within the system. Typically, they will set publishing guidelines and define
processes to ensure that content meets these guidelines.

Multi-user Editing
When a content creator is working on a particular piece of content, it’s important that no
other user can make changes at the same time without the creator’s knowledge. This is
managed via a check-in/check-out function, whereby a content creator must check out a
document before he or she can make any changes to it. While a document is checked out,
only the user who has checked out the document can see the changes that are in progress;
all other users will continue to see the last checked-in version. When an updated document
is checked in and versioning is enabled, a new version is created. SharePoint 2010 takes
this functionality a step further when managing Office 2010 content: now it is possible for
multiple content users to collaborate on the same document at the same time, with all users
seeing an indication of the changes made by others in real time.

Item-Level Permissions
Although documents are commonly stored in folders and permissions are applied to those
folders to determine who has access to their contents, if this was the lowest level of security
granularity available within a system, folders would quickly become security containers
rather than navigational aids and this would greatly complicate any folder hierarchy. A
more flexible approach is to allow permissions to be defined at the individual item level.
Of course, forcing all permissions to be defined at this level would be an administrative
nightmare, since any changes would have to be made to each and every document. To
get around this problem, in SharePoint 2010 permissions are inherited from containing
folders, document libraries, and ultimately web sites. More often than not, folder or
document library–level permissions are appropriate. However, on the rare occasions that
a specific file requires different permissions, inherited folder permissions can be easily
overridden.

Workflows
We’ve looked at a few of the tools that make life easier for content creators, but what about
editors and administrators? How can they ensure that content is created in accordance with
appropriate procedures? The answer to this problem is workflow. As content is created,

New in

2010

116 PART II Presentation Layer

edited, or deleted, editors have the facility to specify business process that should be
followed. These processes, when encapsulated in a workflow, are automatically enforced
by the SharePoint platform to ensure that editors and administrators achieve the level of
control that is the raison d’être of any content management system.

NOTE Workflow is a large subject touching on more than just content management business processes.
More comprehensive coverage can be found in Chapter 11.

Document Sets
Another new feature introduced in SharePoint 2010 is the ability to create document sets.
Often when you’re creating complex work products such as an annual report or a sales
presentation, many elements are required to make up the final product. For example, a
report may contain multiple Word documents, Excel spreadsheets, and Adobe Acrobat
documents. In previous versions of SharePoint, each of these documents could be managed
only in isolation, which meant that facilities such as versioning and check-in/check-out
functionality had to be manually enforced on all documents in the set to ensure that they
remain consistent. With SharePoint 2010, the document set allows all documents to be
managed as a group while still retaining the ability to manage individual documents
in isolation if required.

To use document sets within a site collection, take the following steps:

 1. From the Site Actions menu, select Site Settings.

 2. In the Site Collection Administration section, click the Site Collection Features
link. If the link is not available, click the Go To Top Level Site Settings link to go
to the root site of the site collection.

 3. If it’s not already activated, Activate the Document Set feature by clicking the
Activate button to the right of the feature name.

The Document Set feature makes a new Document Set content type available for use
within the site collection. Before we can create content using this new content type, we
need to attach it to a document library. Note that although we’re manually attaching the
document set content type to a document library in this example, certain site templates
have this behavior enabled by default—for example, the Document Center template.

 1. Using SharePoint Designer, Connect to the sample site that we created earlier in
the chapter (http://<ServerName>/Chapter6).

 2. Add a new document library named DocumentSets using the methods described
earlier in the chapter.

 3. Before we can add a new content type to the DocumentSets document library,
we need to allow management of content types. In the Settings section of the
DocumentSets settings page, check the Allow Management Of Content Types
option, as shown:

New in

2010

Chapter 6 Enterprise Content Management 117

P
a

rt
 I

I

 4. Using the Add button in the Content Types section, add the Document Set
content type.

 5. Click the Save icon in the upper-left corner of the Designer window to commit
the changes.

 6. We can now navigate to the DocumentSets document library and create a new
document set: from the Documents tab of the ribbon, select New Document |
Document Set. Type the name the new document set, My First Document Set,
as shown:

118 PART II Presentation Layer

When creating a document set, the standard user interface that you’ve seen in other
document libraries now contains an additional section that offers details of the document
set and links to additional properties. By selecting Edit Page from the Site Actions menu,
you can see that this user interface contains a few additional web parts, most notably the
Document Set Properties web part. If you make changes to the layout of this page, the
welcome page for all document sets based on the same content type will also be changed
for the current document library.

Document sets are based on the new Document Set content type. However, this is only
the beginning of the story; we can create our own custom content types that derive from the
Document Set and configure them better to meet our requirements. For example, we
can add columns or add default content. We can also specify which content types can be
contained within our document set.

Document Set option configurations can occur either at the Site Collection level,
making it possible to cascade the changes to all instances of the content type on all
document libraries within the site collection, or at the document library level. To
configure at site collection level, do the following:

 1. From the Site Actions menu, select Site Settings. Click Go To Top Level Site
Settings from the Site Collection Administration section if the site is not the
current root of the site collection.

 2. From the root site, select Site Content Types from the Galleries section, and then
scroll to and click the Document Set content type link.

 3. In the Settings section, the Document Set settings link will allow configuration of
the document set.

To configure at the Document Library level, do the following:

 1. From the Library tab, select Library Settings.

 2. Click the Document Set content type from the Content Types section.

 3. Click the Document Set settings link.

Document IDs
This chapter has extolled the virtues of metadata at every opportunity; hopefully, you’ll
agree that when it comes to managing high volumes of content, metadata is the way to
go. However, as a consequence of the more flexible approach to document storage that
metadata permits, often the URL to a document is not as predictable as it might be if a
well-designed hierarchical structure were in place. Furthermore, when saving a document
to a drop-off location using the Content Organizer functionality, the final location of
the document may change, making it difficult to determine the ultimate URL for the
document.

To get around this problem, and to make documents easier to find generally,
SharePoint 2010 includes a Document ID service. The Document ID service generates a
unique identifier for every document and allows documents to be retrieved using a single
static URL in this format: http://myserver/mysite/DocIdRedir.aspx?ID=documented.

New in

2010

http://myserver/mysite/DocIdRedir.aspx?ID=documented

Chapter 6 Enterprise Content Management 119

P
a

rt
 I

I

To configure the Document ID service, take the following steps:

 1. From the Site Actions menu, select Site Settings. Navigate to the top level site
settings page if appropriate.

 2. In the Site Collection Administration section, select Site Collection Features.
Activate the Document ID service if it’s not already activated. Return to the Site
Settings page.

 3. An additional menu option has been added to the Site Collection Administration
section, named Document ID settings. Click this link to configure the service.

 4. To begin assigning document IDs, click the Assign Document IDs checkbox. Enter
a unique prefix for document IDs originating from the current site collection, as
shown:

Although we’ve configured the document ID service, behind the scenes SharePoint
uses timer jobs to activate the service and make the necessary changes to document
libraries within the site collection. As a result of this, the changes that we’ve made may take
some time to be implemented. To check on the progress of these timer jobs or to run them
manually, take the following steps:

 1. Navigate to Central Administration.

 2. From the Monitoring section, click Check Job Status. The Schedules, Running, and
History sections will report the current status of any timer jobs.

 3. To kick off the jobs manually, select the Job Definitions link from the Timer Links
menu. Run the Document ID enable/disable job first and then the Document ID
assignment job.

NOTE As an alternative to using the built-in Document ID generator, you can create a custom ID
generator if identifiers must meet a specific format or must be synchronized with an external system.
Full coverage of this subject is outside the scope of this chapter, but for information see http://
msdn.microsoft.com.

http://msdn.microsoft.com
http://msdn.microsoft.com

120 PART II Presentation Layer

Document Metadata
You’ve seen how metadata is used for content management and how, by using the Managed
Metadata field, metadata can be captured within the SharePoint user interface. However,
when it comes to document management, things work a bit differently. More often than
not, the content creator user interface for a document management system will be a
document creation tool such as Word or Excel. I’m sure it’ll come as no surprise to learn
that all products in the Microsoft Office suite offer tight integration with SharePoint via the
use of the backstage area that you’ve seen in various examples throughout this book. As
well as providing the high level of integration that allows us to save and open documents
directly from SharePoint, products such as Word also provide a document information
panel that can be customized by developers to capture appropriate metadata in the
content-creation interface. Creating document information panels is covered in more
detail in Chapter 5.

Records Management
Records management is a specific branch of document management that deals with the
processing of critical documents. One example of a critical document may be a sales
contract. Changes to an executed contract should follow a rigid process, and retaining an
original version of such a contract is absolutely critical. Documents such as these are known
as records, or documents of record, since they are often electronic records of specific events
or actions.

Original records can never be changed after the fact and are usually subject to some
retention policy. Determining which documents should be considered records and what
policies should be applied for each record is often the task of an organization’s compliance
or risk department. Certain businesses are subject to a greater degree of statutory
compliance regulation, and as a result records management may form a significant part
of any document management strategy. For other businesses, records management may
be a much simpler affair.

Digital Asset Management
The digital assets managed by an organization commonly include such items as product
images, corporate logos, video presentations, podcasts, and other types of rich content.
Managing assets such as product descriptions can be accomplished using a similar approach
to managing other documents. However, when it comes to managing other content, such as
images or video and audio files, a few specific requirements are necessary.

Media Content Types
I’ve mentioned the idea of content types in various places throughout this book, and a full
discussion can be found in Chapter 13. In essence, on the SharePoint platform, a content
type can be used to attach specific attributes and behaviors to a particular type of information.
When it comes to managing digital assets in SharePoint 2010, three new Media Content
types are available, Audio, Image, and Video, as shown here:

New in

2010

Chapter 6 Enterprise Content Management 121

P
a

rt
 I

I

Rich Media Content
Image files are relatively straightforward in terms of their storage and presentation.
Appropriate metadata such as the image size and details of the creator are captured
by way of additional fields on the Image content type.

Video and audio files are a different story, however. Although specific metadata is
also captured via additional fields attached to the appropriate content type, a number of
challenges need to be overcome in the storage and presentation of video and audio data.

One of the first challenges involves the sheer size of the files required to store such
content. Even relatively low-definition video files can easily run into hundreds of megabytes.
From a user experience perspective, downloading such files to play them is not an ideal
situation. Even with a very fast network connection, such downloads would take a considerable
length of time. A better approach is to stream content on demand, effectively allowing the
user to download the content in real time as it’s being viewed. To facilitate this type of
functionality, SharePoint 2010 includes a Silverlight-based media player that can be easily
accessed via a custom pop-up dialog that’s automatically attached to media items.

To see this in action, take the following steps:

 1. From the Site Actions menu, select More Options.

 2. Use the Asset Library template to create a new document library named
MyMediaAssets.

 3. After the library has been created, upload a Windows Media Video file (.wmv).

 4. By default, the Asset Library template defines two views: Thumbnails and All
Assets. When the Thumbnails view is used (which it is by default), you can click the
thumbnail for a particular asset to display a dialog that features a Play button. Click
the Play button to launch the Silverlight media player control, allowing you to view
the content directly from the document library without the need for downloading.

Disk-based Caching
As well as the challenges involved in providing a respectable user interface for video and
audio content, physically storing such data within SharePoint can also present a problem.
This is especially the case where the aggregate data volume is very high. By default,
SharePoint stores all content in a SQL database. Video and audio data is stored as a binary
large object (BLOB). Of course, some overhead is inherent in retrieving this content from
the database as opposed to from the local file system—more so in a farm deployment where
the database exists in a separate physical server and must be accessed over a network
connection.

122 PART II Presentation Layer

To reduce the latency involved in retrieving BLOB data from the database, SharePoint
includes a disk-based cache for BLOB data. Effectively, data is stored in the local file system,
allowing it to be easily pushed out to the client browser on demand without a database
round trip. For more information on disk-based caching, see http://msdn.microsoft.com/
en-gb/library/aa604896(office.14).aspx.

Remote BLOB Storage
Another problem that occurs when a high volume of binary data is stored involves content
database performance. Because all SharePoint content for a given site is stored in the same
content database, extensive use of large video and audio files will degrade performance for
other types of data. Furthermore, a recommended size limitation of 200GB exists for
SharePoint 2010 content databases.

TIP If a site content database is greater than 4GB and contains a large amount of binary data such as
documents or audio and video files, consider using Remote BLOB Storage as part of your overall
data storage solution.

Remote BLOB Storage (RBS) is an add-on application programming interface (API) for
Microsoft SQL Server 2008 and 2008 R2. In a nutshell, RBS transparently stores BLOB data
externally rather than within SQL Server. Data is still accessed in the same manner from an
end user perspective; however, the RBS API uses a provider model to connect physically to
the external BLOB data store behind the scenes.

A number of third-party vendors supply RBS providers for SQL Server 2008. However,
Microsoft provides a free out-of-the-box FILESTREAM provider that effectively makes use
of the file system for the storage and retrieval of BLOB data.

Web Content Management
SharePoint is predominantly a web-based development platform. Of course, as you’ll see
in later chapters, much more is going on behind the scenes than simply generating and
publishing web pages; fundamentally, the fact remains that the main user interface for
SharePoint is rendered via HTML. Web content management, therefore, touches upon a
number of fundamental aspects of the SharePoint platform itself. In this section, we’ll look
at how web content is generated by the SharePoint platform and then move on to look at
how the generation of such content can be managed using the techniques that you saw
earlier in this chapter in relation to managing other types of content.

Page Model
Although SharePoint is based on ASP.NET, the mechanism by which pages are generated is
a bit different from the traditional ASP.NET page rendering model.

http://msdn.microsoft.com/en-gb/library/aa604896(office.14).aspx
http://msdn.microsoft.com/en-gb/library/aa604896(office.14).aspx

Chapter 6 Enterprise Content Management 123

P
a

rt
 I

I

TIP In practically every SharePoint book you’ll ever read, somewhere you’ll find an assertion to the effect
of “SharePoint is based on ASP.NET; therefore, SharePoint pages can be customized using the same
tools and technologies that you’d use to generate standard ASP.NET pages.” Although this is
undoubtedly true, it is not quite as simple as it seems. At a fundamental level, SharePoint is based
on ASP.NET, but in practice, building web applications using SharePoint is probably 20 percent ASP.
NET programming and 80 percent SharePoint-specific programming. This is a critical consideration if
you’re new to SharePoint.

Master Pages
SharePoint makes use of master pages, an ASP.NET concept, but with a slight twist: SharePoint
master pages must have certain placeholders defined. While we can add custom placeholders,
as we might if we were creating an ASP.NET site from scratch, the mandatory placeholders
that are defined by SharePoint host all of the content that is generated by the SharePoint
platform. As a result, master pages are of limited value when it comes to customizing
specific pages. More often than not, an entire site or even site collection will make use
of a single master page.

Page Layouts and Content Types
A more effective way to control the layout of SharePoint-managed content is through the
use of page layouts. Page layouts are a SharePoint-specific concept and are used in
conjunction with master pages to compose a complete web page.

If we were creating a standard ASP.NET application, we may define a master page with
common elements such as a header and footer. We would then create an ASP.NET page that
referenced the master page and replaced the content of any placeholders defined on the
master page. To a certain extent, page layouts in SharePoint work in the same way. However,
the key difference is that if we were using ASP.NET, we’d enter content directly onto the
page; when using SharePoint, the content for the page is retrieved from the SharePoint
content database and is added to the page using field controls. In effect, a page layout acts
as a template for pages that are created from a specific SharePoint content type. It is the
content type that determines which fields are available to be included in the page layout.

Each SharePoint site contains a Master Page gallery containing both master pages and
page layouts. Only master pages and page layouts that are stored in the root site of a site
collection can be used to create new pages. Although most content in SharePoint can be
accessed by selecting Site Actions | View All Site Content, the Master Page gallery can
be accessed by selecting Site Actions | Site Settings and then selecting Master Pages under
Galleries. If the site is not the root site, select Go To Top Level Site Settings under Site
Collection Administration, and then select Master Pages under Galleries.

Field Controls and Columns
Chapter 13 takes a deeper look at how the SharePoint data structure is built up. From a
page-rendering perspective, you need to know that a content type specifies the fields that
are present for a particular piece of content. For example, a sales invoice may contain a

124 PART II Presentation Layer

customer reference, an invoice date, and an invoice amount. To a certain extent, a content
type is also a template, with the difference being that a content type defines a template for
the storage of data, whereas a page layout is a template for the presentation of data. Each
page layout is bound to a single content type, although more than one page layout can use
the same content type.

You’ve seen how a page layout is analogous to a content type from a presentation
perspective. When it comes down to showing actual data on the page, each column or field
also has a default field control, and this control provides the default user interface used to
display or capture data for a specific field. For example, our sales invoice content type
defines a Customer Reference field. The Customer Reference field may be of type Customer
Lookup. When the page is displayed in read mode, a Customer Lookup field might render
the name, address, and reference number of the customer. However, when the page is in
edit mode, the Customer Lookup field type may provide customer search facilities, allowing
the user to find the appropriate customer. Behind the scenes, the data required by the
Customer Reference field is stored within the SharePoint content database in the same way
as data entered in a SharePoint list. For an example of how to create custom fields and field
controls, see Chapter 13.

Publishing
Now that you have a good understanding of how a SharePoint page is composed, let’s move
on to look at how these capabilities come together to deliver web content management in
SharePoint 2010. One of the first requirements of any web content management system is
the ability to publish content and, more importantly, to allow editors and administrators to
control the publishing process. As described, by using custom workflows, you can implement
practically any business process that may be required.

The main difference between creating web content and other document managed
content is in the primary user interface. Other types of managed content commonly make
use of a specific tool such as Microsoft Word, which has rich functionality for the creation
and layout of word processing documents. However, generating web content is a different
story. With rich client applications such as Word, the content creator is free to use all the
features of the product without having to consider how the finished result will be rendered
to the reader, since the reader will be using the same client application. Web content, on
the other hand, must accommodate a much wider audience, and limitations must be in
place regarding how the content is presented and, therefore, on the functionality exposed to
content creators. Defining these limitations and enforcing them is an important difference
for a web content management system.

To see how SharePoint 2010 addresses these issues, let’s work through a demonstration.

Create Page Content Type
We start by creating a page content type:

 1. Using SharePoint Designer, navigate to the root site of the site collection that
contains the sample site that we created earlier (http://<ServerName>/). Then,
from the Site Objects pane, select Content Types.

 2. Create a new content type name Product Page with a parent content type of Page,
as shown.

Chapter 6 Enterprise Content Management 125

P
a

rt
 I

I

 3. From the Content Type menu, select Administration Web Page. This will display the
Site Content Type Information page for the Product Page content type. Click the
Add From New Site Column link, and then add a new column named Product
Description with a type of Full HTML content with formatting and constraints
for publishing.

Create Page Layout Using Content Type
Now that we have a custom content type with an additional column for product
information, we can create a page layout that uses this data structure.

 1. Choose Site Actions | Site Settings, and then select Master Pages from the Galleries
section.

 2. From the Documents tab on the ribbon, select New Document | Page Layout.

 3. Configure the Associated Content Type to use the Product Page content type that
we created earlier. Type the URL Name as ProductPageLayout.aspx and the Title
as Product Page Layout. Click OK to save the changes.

126 PART II Presentation Layer

Edit Page Layout Using SharePoint Designer
Although we’ve created a page layout based on our content type, by default no fields other
than the page title will be displayed. We can edit the page using SharePoint Designer to
show how pages are constructed.

 1. Open SharePoint Designer and connect to the root site that we used earlier.

 2. From the Site Objects pane, select All Files | _catalogs | masterpage. The All Files
option allows us to browse all files within a SharePoint site in a hierarchical
manner. The _catalogs folder contains the gallery folders that we would normally
access via Site Settings.

 3. Double-click the ProductPageLayout.aspx file that we added earlier to open its
property page, and then click the Edit File link in the Customization section, as
shown next:

 4. In the Safe Mode dialog that appears, select Yes to use Advanced Mode. By default,
the page will be displayed using the Code view. If it’s not already visible, show the
Toolbox by selecting Task Panes | Toolbox from the View tab in the ribbon. See the
sidebar “SharePoint Controls” for information about what you’ll find in the toolbox.

Chapter 6 Enterprise Content Management 127

P
a

rt
 I

I
 5. SharePoint Designer is ultimately a web design tool, and many features are

available to help us design and build aesthetically pleasing page layouts. However,
in the interests of keeping these examples simple, we’ll ignore all that good stuff
here and create a very basic page. From the Page Fields section, drag the Title
control into the PlaceHolderMain content placeholder. Repeat this process to
include the Product Description control from the Content Fields section.

SharePoint Controls
The toolbox includes many controls, most of which will be familiar to ASP.NET
developers. However, an additional section, SharePoint Controls, contains the items
that we’re interested in for the purposes of this demonstration. Within SharePoint
Controls are a few sections that warrant some further explanation.

Data View Controls As you’ll see throughout this book, for the most part,
document libraries and lists are rendered on the page using a Data View web
part. Effectively, the Data View web part makes use of an Extensible Stylesheet
Language Transformations (XSLT) template to transform XML-based data from an
SPDataSource control. SharePoint Designer makes it easy to create XSLT templates
by providing a full WYSIWYG interface, and as part of this, Data View controls can be
dragged onto the Data View web part design surface to include specific fields in the
template. (For an example of this functionality, check out http://www.chaholl.com/.)

Server Controls (SharePoint) Server controls are SharePoint-specific custom controls.
These controls inherit from the Microsoft.SharePoint.WebControls.SPControl and are
registered as safe for the web application to which SharePoint Designer is connected.

Page Fields (from <ContentType Name>) Page fields are derived from the
columns that are bound to the content type on which the page is based. In our
example, we created a custom content type named Product Page. The page fields that
are shown in the toolbox are the default field controls that are bound to that content
type. Chapter 13 takes a deeper look at the relationships among fields, field controls,
and content types.

Content Fields (from <ContentType Name>) Content fields work similarly to
page fields and are grouped separately for convenience rather than because they
are fundamentally different. The main difference is that content fields are generally
based on field types that are enabled by the SharePoint Publishing feature.

http://www.chaholl.com/

128 PART II Presentation Layer

 6. In a minor concession to proper formatting, add highlighted labels for each
control and lay them out using the following HTML:

<asp:Content ContentPlaceholderID="PlaceHolderMain" runat="server">
<h3><label>Product Name:</label></h3>
<SharePointWebControls:TextField FieldName="fa564e0f-0c70-4ab9-b863-
0177e6ddd247" runat="server" DisableInputFieldLabel="true"/>
<h3><label>Product Information:</label></h3>
<PublishingWebControls:RichHtmlField FieldName="683ecabb-52d9-4f11-ace8-
8bb3375a049e" runat="server" DisableInputFieldLabel="true"/>
</asp:Content>

 7. After the page layout has been saved, we need to check in the file and create a
published version. Although we could create a page from this layout without
checking it in and publishing it, the layout would be visible only to us (that is, the
document creator). Save the page and then navigate to the Site Settings page of the
root site using the browser. Select the Master Pages gallery.

 8. Select the ProductPageLayout.aspx file, and then from the Documents tab of the
ribbon click the Check In button. In the pop-up dialog, select a Major Version and
then click OK.

 9. Again select the ProductPageLayout.aspx file and click the Approve icon in the
Workflow section of the ribbon, as shown:

 10. Click Approved to approve the checked-in version for publishing.

Create a Web Page Using Layout
With our layout page in place, we can now create new web pages based on the layout. You’ll
see how page creation works from a content creator’s perspective. Before we can allow users
to create pages on our site, we need to enable the SharePoint Server Publishing feature.

 1. Navigate to the http://<ServerName>/Chapter6 sample site that we created earlier.
Choose Site Actions | Site Settings, and then click the Manage Site Features link.

 2. Activate the SharePoint Server Publishing feature.

When the Publishing feature is enabled, a Pages document library is automatically
added to the site. All new pages that are created are stored in the Pages library by default.
Since we’ve created a custom content type that we’ll use for our pages, we need to add this
content type to the Pages document library before we can create pages using it. Take the
following steps:

Approve icon

Chapter 6 Enterprise Content Management 129

P
a

rt
 I

I

 1. Choose Site Actions | View All Site Content. Click the hyperlink for the Pages
document library.

 2. From the Library tab of the ribbon, select Library Settings; then, in the Content
Types section, click the Add From Existing Content Types link.

 3. Add the Product Page content type, as shown:

We can now create new pages using our custom layout and content type.

 1. Choose Site Actions | New Page. Name the new page MyFirstProduct.

 2. By default, the page will be created
using the Body Only layout since
Article is set as the default content
type for the Pages library and Body
Only is the first layout that’s bound
to the Article content type. We can
change this to use our Product Page
layout and our underlying Product
content type by clicking the Page
Layout button in the Page tab of
the ribbon, as shown here:

130 PART II Presentation Layer

 3. Once the layout has been changed, a text box appears where we can enter the page
title, and a flashing cursor appears under the Product Information heading. We can
add content to the page by typing at the cursor or by entering text in the Title text
box. Both of these input controls are rendered automatically when the page is in
edit mode; the type of control that’s rendered is determined by the underlying field
type in our content type.

 4. As well as being able to enter arbitrary text, we can also format and add images and
other elements to the page by using the Format Text and Insert tabs on the ribbon.
Once we’ve finished updating the page, we have a few options:

We can save the page, which will create a minor version and allow us to continue •
editing at a later date. The page will remain checked out to us and no other
users will be able to update it.

We can check in the page, which will automatically check for spelling errors, •
warn us of any existing draft version, and allow us to add a comment that will be
visible to editorial users or other content creators.

We can publish the page, which will have a similar effect to checking in the page, •
the key difference being that a major version will be created rather than a draft
version.

Customize the Page Editing Experience
You’ve seen how easy it is to create pages using page layouts and also how custom page
layouts can be used to control the formatting and layout of pages within a site. However,
one of the key administrative and editorial requirements of a web content management
system is the ability to restrict the type of functionality that is available to content creators
to ensure that any created content properly adheres to organizational standards.

When we created our page layout and dragged our Product Description field onto
the page, a RichHtmlField control was added automatically. The various properties of the
RichHtmlField control are the key to customizing the editing functionality for content
creators. (For more information, see http://msdn.microsoft.com/en-us/library/microsoft.
sharepoint.publishing.webcontrols.richhtmlfield_members(office.14).aspx.)

Content Deployment
For security reasons, it’s considered best practice not to make an internal SharePoint farm
accessible via the Internet. Of course, this does not mean that SharePoint is not suitable for
Internet usage; indeed, the opposite is true. It simply means that you need to take care to
ensure proper segregation between public Internet content and private internal content.
One common approach to this segregation is to create a public SharePoint farm that is
responsible for displaying Internet-facing content only while also having an internal farm
that is responsible for the generation and management of content. Effectively, the public
farm is a read-only copy of specific elements on the internal farm. SharePoint facilitates
such segregation by including a comprehensive Content Publishing API.

http://msdn.microsoft.com/en-us/library/microsoft.sharepoint.publishing.webcontrols.richhtmlfield_members(office.14).aspx
http://msdn.microsoft.com/en-us/library/microsoft.sharepoint.publishing.webcontrols.richhtmlfield_members(office.14).aspx

Chapter 6 Enterprise Content Management 131

P
a

rt
 I

I

Web Parts and Fields
Earlier you saw how field types and page layouts are used to render web-based content in
SharePoint. However, these are not the only ways to add functionality to a page. Another
tool, the web part, can also be used. A web part is a user-configurable control that can be
added to most pages within SharePoint. The key difference between a web part and the
field types that you saw earlier is that a web part is not bound to the underlying content
type of the page—that is, the web part is not used to capture or display the value of a
specific field. Instead, each web part has a number of properties, and the configuration of
these properties determine its behavior. Web part development is a big part of SharePoint
and is covered in more detail in Chapter 7.

Content Query Web Part
When it comes to generating content management solutions, one of the most useful web
parts is the Content Query web part. It can be used to extract specific data from various lists
and libraries within a SharePoint farm and display them within a page. This functionality
allows for the dynamic generation of web pages. For example, a company may require a list
of the top five most popular products on a particular page. While it would be possible to
create a content type and page layout to store this information and then manually update
the page each day, a much better approach is to create a basic page that uses the Content
Query web part to execute a query that returns the top five products and then formats the
results for display on the page.

Summary
This chapter discussed how SharePoint can be used to manage many different types of
electronic content, from word processing documents, to user-generated web content.
Designing and building enterprise content management systems is very much a discipline
in its own right, and this chapter serves as an introduction to the key concepts so that as
developers we can see where they may be used to augment or eliminate the need for
custom development.

This page intentionally left blank

7
CHAPTER

133

User Interface
Customization

You’ve seen how the SharePoint user interface is built up, and you’ve seen some of the
technologies that allow you to enhance the user experience such as the Client Object
Model and InfoPath forms services. Chapter 6 looked at how the content rendered in the
user interface is created and managed. This chapter moves on to look at how we can shape
the presentation of content to suit our requirements. We’ll also take a look at how we can
use custom web parts to implement custom user interface functionality.

Working with Pages
Before we get into the nuts and bolts of customizing pages and applying branding to sites, let’s
take a step back and quickly look at how branding and page rendering work in SharePoint.

Master Pages
The SharePoint page model is based on the ASP.NET model—that is, each page refers to
a master page that defines a number of placeholder controls that can be overridden with
custom content. By using master pages, you can apply a lot of global branding by customizing
the appropriate master page. All pages that make use of the master page will automatically
incorporate the changes.

This might seem like all you need to know in order to brand SharePoint—you can
simply make the changes you need in the master page and the job’s pretty much done.
Unfortunately, however, it’s not quite that simple. Although master pages are undoubtedly
a good thing when it comes to maintaining consistent site design, one of their drawbacks is
that as more and more placeholders are added, the pages become more and more difficult
to customize. Placeholders may contain content for some pages and not for others, or,
some pages may hold a little content while others hold a lot. Creating a design that can
accommodate all these variables is challenging, and as the number of placeholders
increases, so do the challenges.

134 PART II Presentation Layer

Within SharePoint 2010 are two main master pages: v4.master, which is used by most
of the pages generated by SharePoint and is found at %SPRoot%/Template/Global, and
Simplev4.master, which is used as a failsafe for a few pages such as Login.aspx, Error.aspx,
and AccessDenied.aspx. As you can imagine, given the extensive functionality of the
platform, v4.master contains many placeholders. Along with these main master pages are
also a few others such as Applicationv4.master, mwsdefault4.master, and dialog.master,
which are used to support specific aspects of functionality.

CAUTION Do not change the V4.master page in the Global folder. Doing so could seriously damage your
SharePoint installation and may require a reinstall to fix.

Generally speaking, you shouldn’t need to customize any of the built-in master pages.
Each site can make use of a custom master page for both application pages and user-
generated pages.

Creating a Custom Master Page
Although every site has a master pages gallery, and master pages stored there can be bound
to a site using code or manually via SharePoint Designer, only the master pages that are
stored in the root site of the site collection can be bound to sites using the SharePoint user
interface. This allows site collection administrators to retain control of the master pages
that are available throughout a site collection. Bearing this in mind, let’s create a new site
collection for the purposes of this demonstration:

 1. Using SharePoint Central Administration, select Create Site Collections from the
Application Management section.

 2. Name the new site collection Section1 and use the Blank site template. Set an
appropriate administrator account and then click OK.

 3. Navigate to the newly created site. Then, from the Site Actions menu, select Site
Settings. The ability to change the site master page via the user interface is available
as part of the SharePoint Server Publishing Infrastructure feature, which is only
available on SharePoint Server 2010. To enable this feature, select Site Collection
Features from the Site Collection Administration section, and then click the Activate
button next to the SharePoint Server Publishing Infrastructure feature.

 4. We also need to activate the publishing feature at the site level. Navigate back to
the Site Settings page using the navigate up icon next to the Site Actions menu.
In the Site Actions section, select Manage Site Features; then activate the SharePoint
Server Publishing feature.

 5. From the Site Actions menu, select Edit Site in SharePoint Designer.

 6. From the Site Objects pane, select Master Pages. Then, from the Master Pages tab
on the ribbon, select From Content Type | Publishing Master Page. Name the new
master page Chapter7.master.

 7. Select Edit File from the Master Pages tab of the ribbon to open the page for editing.

 We can now make whatever changes that we want to the master page. Remember
that the placeholders that are included in this Publishing Master Page template are

Chapter 7 User Interface Customization 135

P
a

rt
 I

I

required for the page to function correctly. Rather than deleting placeholders, a
better practice is to place them within a hidden ASP:Panel control.

 8. Save the new master page by clicking the Save icon in the upper-left corner.

 9. Switch back to the browser and navigate to the Site Settings page. Select Master
Pages and Page Layouts from the Galleries section, and then select the Chapter7.
master file.

 10. From the Documents tab in the ribbon, select Check In, and then in the Check-in
dialog, select 1.0 Major Version (publish).

 11. Before the master page will be visible to all users, it must be approved. Click the
Approve/Reject button in the Workflows section of the Document ribbon as shown,
and then select Approved.

Approve/Reject button

 12. To set the page as the default publishing master page for the site, navigate back to
the Site Settings page and select Master Page in the Look and Feel section. In the
Site Master Page section, select Chapter7.master from the drop-down list. Then
click OK to continue.

 We’ve specified that our custom master page should be used for all publishing
pages within our demo site. Before we can see our master page in action, we need
to add a new publishing page.

 13. Navigate back to the site home page and then, from the Site Actions menu, select
New Page. Type the page name as My New Page and then click OK.

A new publishing page that uses our custom master page will be added to the site. If no
changes were made to the master page, we’ll see a basic rendering of the page contents.

In this example, you’ve seen how to create a custom master page for use with
publishing pages. If you want to create a master page that can be used to replace the system
master page, you can follow the same process. However, rather than creating a page using
the From Content Type button, you can copy the v4.master page and rename it before
making customizations. The Publishing Master Page template does not contain all the
placeholders that are required by a system master page.

Using Master Page Tokens
You’ve seen the process for creating master pages using SharePoint Designer as well as
how to specify the default publishing master page for a site. But what happens if you’re not
using a publishing page, or if you want to use a specific master page for a particular page
on your site?

Using SharePoint Designer, you can specify the master page to use on a page-by-page
basis. While it’s perfectly acceptable to use a standard path for a master page reference,
such as this,

<%@ Page language="C#" MasterPageFile="~ /MyMasterPages/default.master %>

136 PART II Presentation Layer

the SharePoint page rendering engine also includes two dynamic tokens that can be used
to refer to master pages. By using dynamic tokens, you can change the value of the token
and therefore change the master page that is applied to all pages using the token. Pages
with a hard-coded master page path would each have to be updated any time the master
page changed.

The following dynamic tokens are available:

<%@ Page language="C#" MasterPageFile="~masterurl/default.master %>

<%@ Page language="C#" MasterPageFile="~masterurl/custom.master %>

By default, both of these tokens refer to /_catalogs/masterpage/default.master. Their
values can be changed programmatically using the SPWeb object or by using SharePoint
Designer as follows:

 1. In the Site Object pane, select Master Pages.

 2. Right-click the master page to be used, and then select Set As Default Master Page
or Set As Custom Master Page.

In addition to the dynamic tokens ~masterurl/default.master and ~masterurl/custom.
master, SharePoint also provides two static tokens, ~site/<your master page name> and
~sitecollection/<Your master page name>. These tokens refer to the master page gallery
at the site level and site collection level, respectively.

Delegate Controls
Take a look at the v4.master page, and you can see that the page comprises a number
of different controls, such as SharePoint:SPRibbon and SharePoint:SPLinkButton. To a
certain extent, truly mastering SharePoint branding and user interface design comes down
to knowing what all of these controls are and how each one can be customized. However,
before we start thinking about how to master UI customization, we need to pay particular
attention to one other control: SharePoint:DelegateControl.

A delegate control is a SharePoint-controlled placeholder. All master pages make use
of ContentPlaceHolder controls to dictate the areas of the page that can be populated with
content that’s defined in the content page. The delegate control does the same thing, except
the content is determined by the configuration of the SharePoint site that is hosting the
page. One example of this is the search box functionality that appears on most pages. This
is defined on the v4.master page as a delegate control with the ID SmallSearchInputBox.
Depending on which features are enabled on the site, this delegate control may be
implemented using a Microsoft.SharePoint.WebControls.SearchArea control or a
Microsoft.SharePoint.Portal.WebControls.SearchBoxEx control.

The configuration of a delegate control is done via an Elements.xml file that is usually
deployed as part of a feature. If we wanted to replace the search box on all pages of our
site, we could create an elements file with XML similar to the following:

<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
 <Control Id="SmallSearchInputBox" Sequence="50"
ControlClass="My.Control.Class"

Chapter 7 User Interface Customization 137

P
a

rt
 I

I

ControlAssembly="My.Assembly, Version=…, Culture=neutral, PublicKeyToken=…">
 <Property Name="aProperty">foo</Property>
 <Property Name="anotherProperty">bar</Property>
 </Control>
</Elements>

The creation and deployment of elements files is covered in more detail in Chapter 19.
In this chapter, the main point that you need to know is that delegates are configurable
placeholders and can be used to swap out page markup or controls. In this sample, we’ve
created a delegate that loads an assembly; you can also create a delegate that refers to a
user control by setting the ControlSrc attribute of the Control element rather than the
ControlClass and ControlAssembly attributes. One other important attribute of the Control
element is the Sequence attribute. Because it’s possible that a given site may have more
than one definition for a single delegate, the Sequence attribute is used to determine
which one takes priority. The delegate with the lowest number will be displayed.

Cascading Style Sheets
Although master pages do the job of determining how the markup for the completed page
fits together, best practice dictates that the styling of the completed markup is the job of
Cascading Style Sheets (CSS). In much the same way that master pages can be configured at
the site level, so can style sheets. Using the Master Page option in the Look and Feel section
of the Site Settings menu, you can specify an alternative style sheet for all pages on a site.

Themes
Themes have been around for a while as an option to customize the visual appearance of
SharePoint. Introduced in SharePoint 2003, the themes that were available in SharePoint
consisted of a custom style sheet that could be applied to a site by a site owner. Although
this approach worked well, it did have a drawback in that style sheets could be created
only by web designers with some experience of styling the SharePoint platform. Given
the complexity of the built-in style sheets, this was no easy feat.

With SharePoint 2010, things have moved on considerably. It’s no longer solely the
domain of a developer to create custom styles; nontechnical users can now create and
modify styles easily by using the SharePoint user interface.

Themes from a User’s Perspective
An important consideration when it comes to themes is that they are now packaged using
an OpenXML file format. As a result, themes can be created in and shared among many
Office applications. For example, you can create a theme in Microsoft Word and export
that theme for use in SharePoint.

To see how themes work from a user’s perspective, navigate to the demo site that we
created earlier. From the Site Actions menu, select Site Settings. Then, from the Look and
Feel section, select Site Theme.

NOTE Customizing themes using the user interface requires the SharePoint Server Publishing
Infrastructure to be activated at the site-collection level.

138 PART II Presentation Layer

Using the controls in the Customize Theme section of the page, shown next, you can
specify colors and fonts for a number of standard text types and preview your custom theme.

Themes from a Developer’s Perspective
Users can customize themes by overriding a number of standard elements such as Accent 1
or Hyperlink. Let’s look at how the new SharePoint theming engine takes this information
and converts it to CSS for use by the user interface.

Out of the box, themes are stored in the %SPRoot%\Template\Global\Lists\Themes
folder, and, as you can see by examining the contents of this folder, they are packaged with
a .thmx extension using the OpenXML format. (We’ll look at OpenXML in a bit more
detail in Chapter 10.) Effectively, an OpenXML file is a ZIP archive containing a number
of XML files and other content such as images.

It is generally considered best practice to refer to style sheets within the SharePoint
platform using a CssLink control and a CssRegistration control. You can see examples
of these controls in the v4.master page. The CssLink control acts as a placeholder for the
output of CSS links for a page and is generally placed in the header, whereas a CssRegistration

control can be used anywhere within a page or in the child objects that make up a page,
such as user controls and web parts. The CssRegistration control contains details of a
particular style sheet that should be linked to the page.

At runtime, before the page is output, the style sheets referred to by all of the
CssRegistration controls within the consolidated control hierarchy of a page are collated
and output by the CssLink control. You can see this in action if you look at the output for
any SharePoint page without a theme applied; in the header of the page, you’ll see tags
such as these:

New in

2010

Chapter 7 User Interface Customization 139

P
a

rt
 I

I

<link rel="stylesheet" type="text/css" href="/_layouts/1033/styles/Themable/
search.css?rev=<snipped>"/>
<link rel="stylesheet" type="text/css" href="/_layouts/1033/styles/Themable/
corev4.css?rev=<snipped>"/>

However, if you look at the default v4.master page, you’ll find only this:

<SharePoint:CssLink runat="server" Version="4"/>

This dynamic generation of CSS links is leveraged by the SharePoint 2010 theming
engine. If you apply a theme to a site and then look at the output HTML, you’ll see that
the CSS links have changed to these:

<link rel="stylesheet" type="text/css" href="/sites/Section1/_themes/3/
layouts-9C6B8173.css?ctag=4"/>
<link rel="stylesheet" type="text/css" href="/sites/Section1/_themes/3/
corev4-8A0ABD2F.css?ctag=4"/>

Notice that the style sheet links have changed and now refer to the _themes folder for
the current site. When a theme is applied using the user interface, the SharePoint platform
automatically generates style sheets and image files based on the theme and stores these
files within the _themes folder. You can see the generated output by browsing to the
referenced folder using SharePoint Designer.

Supporting Themes in Custom Style Sheets
One of the properties of the CssRegistration control is EnableTheming. As its name
suggests, this is a Boolean value that dictates whether the referenced style sheet should be
replaced with a themed alternative if a theme is applied to a site. When creating custom
style sheets, you’re not required to support themes—after all, maintaining a consistent style
may be the aim of a custom style sheet. However, to use themes in a custom style sheet, you
will need to create some additional markup. Looking at Core.Css (%SPRoot%/Layouts/1033/
Styles/Core.Css), you can see a few interesting comments, such as these:

.ms-dlgTitle
{
/* [RecolorImage(themeColor:"Light2",includeRectangle:{x:0,y:51,width:1,height:
21})] */ background:url(“/_layouts/images/bgximg.png") repeat-x -0px -51px;
/* [ReplaceColor(themeColor:"Dark2",themeShade:"0.90")] */ background-color:
#21374c;
height:32px;
white-space:nowrap;
cursor:default;
overflow:hidden;
}

These comments are used by the theming engine to generate style sheets and images
dynamically that make use of the various attributes of the theme. Notice that by using the
RecolorImage tag, you can recolor images based on theme colors. You have to admit, that’s
pretty clever!

140 PART II Presentation Layer

Adding Custom Functionality
Now that you’ve got a good understanding of how a SharePoint page is constructed and
what factors are important in determining the overall look and feel of a site, let’s move on
to look at how you can add additional functionality to a page.

Web Parts
You’ve seen how you can use tools such as InfoPath forms services to customize input forms.
But what if you want to add functionality that goes beyond the capabilities of InfoPath? Let’s
look at a few options—the first is to create a custom web part.

Two types of web parts can be used within SharePoint: legacy web parts that are derived
from the Microsoft.SharePoint.WebPartPages.WebPart base class, and standard ASP.NET
web parts that are derived from the System.Web.UI.WebControl.Webparts.WebPart base
class. The recommended approach for creating new web parts is to use the ASP.NET model.

Web Part Infrastructure
Before we delve into a discussion on how to create web parts for use with SharePoint, let’s
recap how the ASP.NET web part infrastructure works and what it does. A web part is a
server control that exposes functionality that allows it to be configured or personalized by
nontechnical users. In a sense, web parts are like building blocks: we can choose the web
parts that we need to build something and stick them on the page wherever we want them.

To provide this functionality, the web part infrastructure has a few additional elements
that should be included on a page. One of the first is the WebPartManager control, which
is used to manage the configuration information for each web part on a page. As well as a
WebPartManager, to allow designers some control over where web parts can be placed, the
web part infrastructure makes use of WebPartZone controls that represent zones within a
page where web parts can be added.

The SharePoint platform defines custom WebPartManager and WebPartZone controls
that are derived from their ASP.NET counterparts. This allows web part settings to be
persisted and controlled in a way that better suits the SharePoint page rendering mechanism.
For example, one of the new features in SharePoint 2010 is the ability to version web part
configuration along with other elements on a page. This functionality makes use of the
custom SPWebPartManager class.

Earlier we looked at the default v4.master page that provides the basis for rendering all
SharePoint pages. It’s worthwhile to note that this master page contains a SPWebPartManager
control, so all pages that are derived from this master page can make use of web parts.

Web Part Security
Web parts are a bit like building blocks; users can build whatever they like with them.
However, left unchecked, users can potentially build resource-hogging monstrosities that
can kill a site for all other users. To prevent this and to give administrators some control
over the web parts that can be included on a page, SharePoint requires that all controls be
registered as safe before they are allowed to be included. Safe controls are specified using
a series of SafeControl elements within the site’s web.config file.

In addition to requiring controls to be explicitly specified as safe for a given site, web parts
can also make use of code access security to restrict the actions of web part code even more.

Chapter 7 User Interface Customization 141

P
a

rt
 I

I

Creating a Web Part
To demonstrate how web parts can be created and used within a SharePoint page, let’s work
through an example. We’ll create a simple web part that accepts two property values: a
color and the name of a SharePoint list. The web part will display a list of items in the list
using the selected colors. Although this is a trivial example, it will illustrate the key elements
that are used when building more useful web parts.

 1. In Visual Studio, choose File | New | Project. In the New Project dialog, select
Empty SharePoint Project. Name the project Chapter7WebPart, as shown:

 2. Set the local site to use for debugging to the demo site that we created earlier
(http://<server name>/sites/Section1) and select the Deploy As Farm Solution
option.

 3. Choose Project | Add New Item. In the Add New Item dialog, select Web Part.
Name the web part DemoWebPart.

 4. In the file DemoWebPart.cs, add the following code:

[ToolboxItemAttribute(false)]
public class DemoWebPart : System.Web.UI.WebControls.WebParts.WebPart
{
 private ColorEnum _textColor = ColorEnum.Black;
 private string _listName = string.Empty;

 public enum ColorEnum
 {
 Red,
 Green,
 Blue,
 Black,
 White
 }

142 PART II Presentation Layer

 [Personalizable(true),
 WebBrowsable(true),
 WebDescription("Select the font color used to display text"),
 WebDisplayName("Text Color") ,
 SPWebCategoryName("Color")]
 public ColorEnum TextColor {
 get
 {
 return _textColor;
 }
 set
 {
 _textColor = value;
 }
 }

 [Personalizable(true),
 WebBrowsable(true),
 WebDescription("Select the list name from which text will be retrieved"),
 WebDisplayName("List Name")]
 public string ListName {
 get
 {
 return _listName;
 }
 set
 {
 _listName = value;
 }
 }

 protected override void CreateChildControls()
 {
 HtmlGenericControl div = new HtmlGenericControl("div");
 SPList list=SPContext.Current.Web.Lists.TryGetList(ListName);

 if (list != null)
 {
 SPQuery query = new SPQuery();
 query.RowLimit = 50;
 SPListItemCollection items = list.GetItems(query);
 StringBuilder sb = new StringBuilder();
 sb.Append("<ul style=\"color:" +
 System.Enum.GetName(typeof(ColorEnum), TextColor)
 + "\";>");

 foreach (SPListItem item in items)
 {
 sb.Append("" + item.Title + "");
 }
 sb.Append("");

 div.InnerHtml = sb.ToString();
 }

Chapter 7 User Interface Customization 143

P
a

rt
 I

I

 else
 {
 div.InnerHtml = "List not found";
 }

 this.Controls.Add(div);

 }
}

 We’re querying the configured list and creating an unordered list of the title of
the top 50 items. Notice that the attributes that are applied to the TextColor and
ListName properties. For the property to be visible in the Property Editor pane,
WebBrowsable must be set to true.

 5. To see how the web part works on a page, select Deploy Chapter7WebPart from the
Build menu.

 6. In the browser, navigate to the home page of the demo site that we set up earlier,
and then choose Site Actions | Edit Page. From the Insert tab on the ribbon, select
Web Part.

 7. From the Custom category, select DemoWebPart, and then click Add:

 8. Since we haven’t configured a list, the web part will display “List not found.” To edit
the web part properties, right-click the arrow to the right of the web part and select
Edit Web Part from the context menu, as shown:

144 PART II Presentation Layer

 9. Our custom properties appear in the Color section and the Miscellaneous section,
as configured by the attributes that we applied to the properties. By placing the
cursor over the property name, you’ll see the description text that we added as a
tooltip. In the List Name text box, enter Web Part Gallery as the name of the list,
and then click OK.

Improving the Property Editing Experience: Editor Parts
For our sample web part, we’ve used a text box to allow users to enter the name of a list.
While this works as we expected, it’s not exactly an ideal interface. A better approach would
be to show a drop-down list of available lists and allow the user to select one. To implement
this functionality, we’ll use an editor part. Editor parts are also server controls and work in a
similar fashion to web parts. However, editor parts are rendered within the Property Editor
pane, and their primary function is to enhance the design-time experience for users.

To add a new editor part, take the following steps:

 1. Within the DemoWebPart folder in Visual Studio, add a new class file named
ListPickerEditor.cs. Add the following code:

class ListPickerEditor : EditorPart
{
 private HtmlSelect _listsDropdown;
 private string _selectedValue = "";

 [Personalizable(true), WebBrowsable(false)]
 public string selectedValue
 {
 get { return _selectedValue; }
 set { _selectedValue = value; }
 }
 public ListPickerEditor(string webPartId)
 {
 this.ID = "ListPickerEditor" + webPartId;
 this.Title = "List Picker";
 }

 protected override void CreateChildControls()
 {
 _listsDropdown = new HtmlSelect();
 Controls.Add(_listsDropdown);
 }

 public override bool ApplyChanges()
 {
 EnsureChildControls();
 DemoWebPart _part = WebPartToEdit as DemoWebPart;
 _part.ListName = _listsDropdown.Items[_listsDropdown.SelectedIndex].Value.
ToString();
 return true;
 }

 public override void SyncChanges()
 {
 DemoWebPart _part = WebPartToEdit as DemoWebPart;

Chapter 7 User Interface Customization 145

P
a

rt
 I

I

 EnsureChildControls();
 selectedValue = _part.ListName;

 PopulateDropDown();

 if (_listsDropdown.Items.FindByValue(_selectedValue)!=null)
 {
 _listsDropdown.Value = selectedValue;
 }

 }

 private void PopulateDropDown()
 {
 SPListCollection lists = SPContext.Current.Web.Lists;
 _listsDropdown.Items.Clear();
 foreach (SPList list in lists)
 {
 if (list.Fields.ContainsField("Title"))
 {
 _listsDropdown.Items.Add(list.Title);
 }
 }
 }
}

 2. To hook up this editor part to our web part, we need to implement the IWebEditable
interface. In DemoWebPart.cs, change the class definition to this:

public class DemoWebPart : WebPart, IWebEditable

 3. Add the following overrides to the DemoWebPart.cs file:

EditorPartCollection IWebEditable.CreateEditorParts()
{
 List<EditorPart> editors = new List<EditorPart>();
 editors.Add(new ListPickerEditor(this.ID));
 return new EditorPartCollection(editors);
}
object IWebEditable.WebBrowsableObject
{
 get { return this; }
}

 4. Finally, since we have an editor for our ListName property, we don’t need to display
the text box default implementation. So that our ListName property is not shown
in the Editor pane, change the WebBrowsable attribute to false.

We can now deploy this revised web part and use a drop-down list to configure the list
to be displayed rather than having to type it manually.

Visual Web Parts
In our examples so far, we’ve adopted the standard ASP.NET approach to building web parts.
Because a web part is a server control, the user interface needs to be manually constructed. In
our simple examples, this didn’t cause too much trouble; however, as the user interface gets

New in

2010

146 PART II Presentation Layer

more complicated, this approach becomes a problem due to the lack of a design-time
interface and the extra code required to hook up controls to their events. Once again, the
folks at Microsoft realized that this was a major pain for SharePoint developers, and in
SharePoint 2010 introduced the Visual Web Part. A Visual Web Part is a web part that loads
an embedded user control. Since user controls have a design-time interface in Visual Studio,
creating complex web parts becomes much simpler.

To create a Visual Web Part, take the following steps:

 1. In the Chapter7WebPart project that we created earlier, choose Project | Add
New Item.

 2. In the Add New Item dialog, create a new Visual Web Part named
DemoVisualWebPart, as shown:

 3. In the DemoVisualWebPartUserControl.ascx, drag an UpdatePanel control from
the toolbox. Drag a Label control into the UpdatePanel. From the AJAX Extensions
category in the toolbox, drag a Timer control. Set the timer interval to 5000.

 4. Set the Triggers property of the UpdatePanel control to use the Tick event of the
timer, as shown:

Chapter 7 User Interface Customization 147

P
a

rt
 I

I

 5. In the DemoVisualWebPart.cs file, add the following code:

public class DemoVisualWebPart : WebPart
{
 private const string _ascxPath = @"~/_CONTROLTEMPLATES/Chapter7WebPart
.DemoWebPart/DemoVisualWebPart/DemoVisualWebPartUserControl.ascx";

 protected override void CreateChildControls()
 {
 DemoVisualWebPartUserControl control = Page.LoadControl(_ascxPath)
as DemoVisualWebPartUserControl;
 control.ListName = this._listName;
 Controls.Add(control);
 }

 private string _listName = string.Empty;

 [Personalizable(true),
 WebBrowsable(true),
 WebDescription("Select the list name from which text will be retrieved"),
 WebDisplayName("List Name")]
 public string ListName
 {
 get
 {
 return _listName;
 }
 set
 {
 _listName = value;
 }
 }
}

148 PART II Presentation Layer

 6. In the code-behind file from the user control (DemoVisualWebPartUserControl.
ascx.cs), add the following code:

 public partial class DemoVisualWebPartUserControl : UserControl
 {
 public string ListName { get; set; }

 protected void Page_Load(object sender, EventArgs e)
 {
 GetNextListName();
 }

 private void GetNextListName()
 {
 SPList list = SPContext.Current.Web.Lists.TryGetList(ListName);
 if (list == null)
 {
 Label1.Text = "List not found";
 ViewState.Remove("ItemId");
 Timer1.Enabled = false;
 return;
 }
 SPQuery query = new SPQuery();
 query.RowLimit = 50;
 SPListItemCollection items = list.GetItems(query);

 if (items.Count > 0)
 {
 int nextIndex = 0;
 if (ViewState["ItemId"] != null)
 {
 int currentValue = (int)ViewState["ItemId"];

 if (currentValue >= items.Count - 1)
 {
 nextIndex = 0;
 }
 else
 {
 nextIndex = currentValue + 1;
 }

 }
 Label1.Text = items[nextIndex].Title;
 ViewState["ItemId"] = nextIndex;
 }
 else
 {
 Label1.Text = "No Items found";
 ViewState.Remove("ItemId");
 }
 Timer1.Enabled = true;
 }
 }

Chapter 7 User Interface Customization 149

P
a

rt
 I

I

When this web part is deployed and then added to a page, it performs a function
similar to that in our earlier example. The difference is that this web part makes use of
Asynchronous JavaScript and XML (AJAX) to cycle periodically through the items in the
configured list. Of course, we could have created a similar web part without the benefit
of a visual designer, but I’m sure you’ll agree that using a Visual Web Part makes the job
much simpler.

Summary
This chapter looked at the key elements of the SharePoint platform with regard to user
interface development. You’ve seen that by using the underlying master page model of
ASP.NET, SharePoint sites can implement common user interface elements in a single
location. You’ve also see how themes created in any Microsoft Office application can be
easily applied to SharePoint, allowing nontechnical users to create custom themes without
having to resort to any development tools. Finally, you saw how web parts can be used to
add functionality in a modular fashion that can be configured by nontechnical users as
and when required.

This page intentionally left blank

Application Services

PART

III
CHAPTER 8
Application Services
Overview

CHAPTER 9
Service Application
Framework

CHAPTER 10
Word Automation Services

CHAPTER 11
Workfl ow

CHAPTER 12
Excel Services

This page intentionally left blank

8
CHAPTER

153

Application Services
Overview

When it comes to evaluating software applications, many organizations often pay too much
attention to the eye candy and not enough to the clever stuff that goes on behind the scenes.
With SharePoint, this is easy to do, and in my experience, many organizations have invested
in a SharePoint implementation without fully appreciating the potential of the platform.
SharePoint is more than a platform that allows users to create web sites or collaborate on
content creation. In Part II, you saw a lot of clever SharePoint user interface features, but
the real meat of the SharePoint platform is in the application services layer.

In this part of the book, we’ll take a look at the service application architecture and dig
into a few application services in more detail. Before we get into that stuff, though, this
chapter spends a bit of time covering one of the fundamental tools for implementing
application layer processing on the SharePoint platform: event handling.

Handling Events
Most software applications are event driven—that is, the order in which code executes is
determined by a sequence of events. Events can be raised by many different sources, such
as a user clicking a button or the contents of a file changing. To support an event-driven
software development approach, the SharePoint platform also raises many different events
that can be programmatically handled.

A few different levels of event handling apply to applications developed using the
SharePoint platform. One of the most obvious is the events that are raised and handled by
the underlying ASP.NET framework. Some of these events, also known as post-back events,
are raised when users interact with controls on a web page. Along with these user-initiated
events are system-generated events such as the PreInit, Load, and Render events that form
part of the ASP.NET page processing lifecycle. Handling events such as these are run-of-the-
mill tasks for developers familiar with the ASP.NET platform, so I won’t spend much time
covering them other than to acknowledge that they are an important part of any SharePoint
application design.

154 PART III Application Services

In addition to the event handling model provided by the ASP.NET framework and the
various user controls that SharePoint provides that directly use this mode, SharePoint also
provides an additional level of event handling that is tied more directly to the operations in
the SharePoint platform.

Event Hosts
As you’ve seen in many of the examples in this book, a few core objects provide most of
the functionality that we commonly use when developing SharePoint applications: SPSite,
SPWeb, SPList, and SPContentType. Each of these objects is capable of hosting events and
as such is known as an event host. To compare this to the Windows forms event model, an
example of an event host might be a button on a form.

Event Receivers
Events raised by any of the event host classes are handled by event receivers, which work
in a similar fashion to an event handler in traditional ASP.NET programming. Each event
receiver is implemented in a class that’s derived from a base class that defines methods for
each event that can occur. The primary difference between SharePoint events and traditional
ASP.NET events is that the event receiver is decoupled from the event host—that is, the
event receiver exists in an assembly that’s completely separate from the event host and the
connection between the two is dynamically made via configuration as opposed to being
established within code. A direct comparison with the Windows forms event model isn’t
possible, since Windows forms events make use of delegates, which allow events to be
handled in any class. Each SharePoint event receiver is a class in its own right; in a sense,
each method defined within an event receiver serves the same purpose as a delegate in the
Windows forms model.

Receiver Base Classes
As mentioned, each event receiver must be based on an appropriate receiver base class.
The base class dictates which events can be handled by the event receiver as well as which
event hosts can call the event receiver. Naturally, not all event hosts are capable of raising
the same events, so it makes sense that not all event hosts support each receiver base class.

Within the SharePoint platform are four receiver base classes that are derived from
SPEventReceiverBase. Event receivers can be derived from these classes to handle events
from the SPSite, SPWeb, SPList, and SPContentType event hosts.

SPItemEventReceiver
This base class defines methods that can be used to trap events that are raised by items.
As you’ve seen, an item can be either a document or a list item. For a complete list of the
events that can be handled using this base class, see http://msdn.microsoft.com/en-gb/
library/microsoft.sharepoint.spitemeventreceiver_members.aspx.

SPListEventReceiver
This base class defines methods that can be used to trap events that are raised by lists.
As you’ve seen, an SPList object can represent either a list or a document library. For a

http://msdn.microsoft.com/en-gb/library/microsoft.sharepoint.spitemeventreceiver_members.aspx
http://msdn.microsoft.com/en-gb/library/microsoft.sharepoint.spitemeventreceiver_members.aspx

Chapter 8 Application Services Overview 155

P
a

rt
 I

II

complete list of the events that can be handled using this base class, see http://msdn.
microsoft.com/en-gb/library/microsoft.sharepoint.splisteventreceiver_members.aspx.

SPWebEventReceiver
This base class defines methods that can be used to trap events that are raised by web sites.
Each web site is represented by a SPWeb object. For a complete list of the events that can
be handled using this base class, see http://msdn.microsoft.com/en-gb/library/microsoft
.sharepoint.spwebeventreceiver_members.aspx.

SPWorkflowEventReceiver
The SPWorkflowEventReceiver class is a new addition in SharePoint 2010. In previous
versions, it was not possible to create event receivers to handle workflow events such as
Starting or Completed. This presented a problem when further validation of processing
was required before a workflow could be started. With SharePoint 2010, four new workflow
events have been added: WorkflowCompleted, WorkflowPostponed, WorkflowStarted, and
WorkflowStarting.

Synchronous and Asynchronous Events
If we look at a few of the events that can be handled by the SPItemEventReceiver class, we
see that usually two events occur for each action—for example, ItemAdded and ItemAdding.
This duplicity can exist because these events occur at different points in the process of
adding an item.

If a new SPItem is created and added via the object model, when the Update method is
called on the appropriate object, the ItemAdding event is fired. This event runs in the
same thread as the code that added the item; as a result, this type of event is known as a
synchronous event.

After the Update method has been called and any synchronous event receivers have
been called, processing returns to the code that added the item. However, behind the
scenes, the SharePoint Object Model commits the changes to the content database. After
this has completed, the ItemAdded event is fired and runs in a separate thread; it is known
as an asynchronous event handler.

The main reason for handling a synchronous event as opposed to an asynchronous
event is to perform some validation before the results of an action are committed to the
content database. For example, before an item is added to a list, some managed code can
be executed to check that all required fields are populated. If this check fails, the action
can be canceled and return an error message to the user. With an asynchronous event
handler, any problems would need to be resolved by rolling back already committed
changes, and since the event occurs in a separate thread, no mechanism is in place to alert
the user of any problem.

In previous versions of SharePoint, events that were fired after changes were committed
to the content database and were always asynchronous. With SharePoint 2010, it’s now
possible to dictate that these events should be fired either synchronously or asynchronously.
As we saw earlier, one way to add an event receiver to a particular event host was to create
a new object of type SPEventReceiverDefinition. One of the properties of the
SPEventReceiverDefinition object, Synchronization, allows us to specify which mode
should be used when firing the event.

New in

2010

http://msdn.microsoft.com/en-gb/library/microsoft.sharepoint.splisteventreceiver_members.aspx
http://msdn.microsoft.com/en-gb/library/microsoft.sharepoint.splisteventreceiver_members.aspx
http://msdn.microsoft.com/en-gb/library/microsoft.sharepoint.spwebeventreceiver_members.aspx
http://msdn.microsoft.com/en-gb/library/microsoft.sharepoint.spwebeventreceiver_members.aspx

156 PART III Application Services

Security Context
When event receivers are called, generally speaking, they run in the security context of the
user who initiated the changes that caused the event to be fired. If the events have been
raised as the result of changes made by a workflow process, the events run in the context of
the user who either started the workflow or made the change that caused the workflow to
be started automatically. This behavior differs from previous versions of SharePoint, in
which events that were initiated by workflow changes always executed under the
SharePoint\System security context.

NOTE SharePoint\System is a virtual account that’s mapped to a physical account by the SharePoint
platform when a web application is created. Each web application can potentially have a different
application pool account. So that developers and the SharePoint platform itself have a single,
well-defined way to refer to this account, regardless of the underlying physical account that’s used,
“SharePoint\System” is used as a pseudonym throughout the platform. Since all system processes
are started by the SharePoint\System account, this account has full control over all aspects of a web
application.

In some situations, the default security context may not be appropriate. If an event
receiver is executing under the security context of a particular user and a higher level of
system privilege is required, using SPSecurity.RunWithElevatedPrivileges allows code to be
executed as SharePoint\System:

 public override void ItemAdded(SPItemEventProperties properties)
 {
 SPSecurity.RunWithElevatedPrivileges(() =>
 {
 using (SPSite site = new SPSite(properties.SiteId))
 {
 using (SPWeb web = site.OpenWeb(properties.Web.ID))
 {
 SPListItem item = web.Lists[properties.ListId].Items[properties.
ListItem.UniqueId];
 item["Title"] = "Updated as System Account";
 item.Update();
 }
 }
 }
);
 }

Although this works well for elevating system privileges, it doesn’t do much to help us when
the receiver is running as SharePoint\System and we want to revert to the security context
of the user who originated the event. For example, in this code snippet, because the Update
method is being called with a section of code that is being run with elevated privileges,
any ItemUpdated or ItemUpdating event receivers that are defined will run under the
SharePoint\System security context.

To get around this problem, SharePoint 2010 adds a new property that allows us to pick
up the security token of the originating user and make use of it to switch security context
manually, as this example shows:

public override void ItemUpdating(SPItemEventProperties properties)
 {

Chapter 8 Application Services Overview 157

P
a

rt
 I

II

 Trace.Write("Updating receiver running as : " + properties.Web.CurrentUser.Name);
 using (SPSite site = new SPSite(properties.SiteId, properties.OriginatingUserToken))
 {
 using (SPWeb web = site.OpenWeb(properties.Web.ID))
 {
 Trace.Write("originating user was : " + web.CurrentUser.Name);
 }
 }
 }

Event Properties
Four different receiver base classes can be used to create event receivers for the event hosts
described earlier. Since each of these hosts represents a different object within the SharePoint
platform, the properties that are available to each event receiver are also different. Each
receiver base class makes use of a specific event properties class that is derived from
SPEventPropertiesBase to communicate with the respective event receiver. These base
classes are SPItemEventProperties, SPListEventProperties, SPWebEventProperties, and
SPWorkflowEventProperties.

SPItemEventProperties
The SPItemEventProperties class is used to communicate details of the item on which an
event was raised to the appropriate event receiver. Two important properties of the class that
warrant further explanation are AfterProperties and BeforeProperties. Earlier we looked at
synchronous events and asynchronous events, and we discovered that in SharePoint 2010, it
is possible to specify that events that would normally occur asynchronously can instead be
called synchronously. For the sake of clarity, let’s consider events that are synchronous by
default as before events, and events that are asynchronous by default as after events.

When a before event is raised, AfterProperties contains the item properties that will
be stored in the content database if the event is processed successfully. BeforeProperties
contains the item properties that are currently stored in the content database.

When an after event is raised, either synchronously or asynchronously, BeforeProperties
contains the values that were previously stored in the content database, whereas
AfterProperties contains the values that are currently stored in the content database.

CAUTION BeforeProperties works only for document items. For all other items, BeforeProperties will
always be null.

SPListEventProperties
The SPListEventProperties class is used to communicate the details of the list or field on
which an event was raised to the appropriate event receiver.

SPWebEventProperties
The SPWebEventProperties class is used to communicate the details of the web or site on
which an event was raised to the appropriate event receiver. The SPWebEventProperties
class contains both a ServerRelativeUrl and a NewServerRelativeUrl property. When the
event being handled is a before event (as defined above), the ServerRelativeUrl property
will contain the current URL of a site or web, and the NewServerRelativeUrl will contain
the URL that the site or web will have if the event is processed successfully.

158 PART III Application Services

When the event being handled is an after event, the ServerRelativeUrl property will
contain the previous URL of the site or web, whereas the NewServerRelativeUrl will contain
the current URL.

If the event is a Delete or Deleting event, the NewServerRelativeUrl will throw an
InvalidOperationException.

SPWorkflowEventProperties
The SPWorkflowEventProperties class is used to communicate the details of the workflow
instance on which an event was raised to the appropriate event receiver.

Shared Properties
The base SPEventPropertiesBase class defines a few interesting properties that are
inherited by all event properties classes.

First, the Status property allows code within an event receiver to specify the outcome of
an event. Possible outcomes are defined by the SPEventReceiverStatus enumeration and
include the following:

Continue• All is well; carry on as normal.

CancelNoError• Cancel the request but don’t present a notification to the caller.

CancelWithError• Cancel the request and raise an error message as specified by
the ErrorMessage property.

CancelWithRedirectUrl• Cancel the request and redirect the caller to the URL
specified in the RedirectUrl property.

NOTE CancelWithRedirectUrl doesn’t work when events are raised by clients using Microsoft Office
applications, since these applications do not provide a web browser. Effectively, the redirect is
ignored.

Second, the EventUserToken and OriginatingUserToken properties, as discussed
earlier, can be used to switch between security contexts.

Packaging and Deployment Events
Along with the event hosts that we looked at earlier, the SharePoint platform also includes
an additional host, the SPFeatureDefinition class, which is used for packaging and
deployment purposes. Events in the packaging and deployment framework are hooked up
a bit differently, and more in-depth coverage of this subject will be provided in Chapter 19.
For now, it’s enough to know that these events exist and also make use of event receivers in
a similar manner.

Chapter 8 Application Services Overview 159

P
a

rt
 I

II

 3. Choose Project | Add New Item. From the Add New Item dialog, select Event
Receiver and type the name as ListEventReceiver.

 The SharePoint Customization Wizard will prompt for additional settings before
creating an event receiver class in the project, as shown next. Let’s take a look at

Creating Event Receivers
Now that you understand how event receivers let us implement custom business logic for
our SharePoint applications, let’s take a look at how we can create them and hook them up
with the platform.

 1. Create a new blank site named Chapter 8. Add a custom list named Test List.

 2. Using Visual Studio, create a new Empty SharePoint Project named
DemoEventReceivers, as shown next. Set the debugging site to the new site
created in step 1, and then select the Deploy As A Farm Solution option.

160 PART III Application Services

 The options in the What Type Of Event Receiver Do You Want? drop-down list
correspond to the receiver base classes discussed earlier. The exception to this is the
List Email Events option, which we’ll look at later in this chapter. The items in
the What Item Should Be The Event Source? drop-down list correspond to the event
host that will raise the event. Each option represents a specific instance of an
event host.

 4. For this demonstration, set the type of event receiver to List Item Events and then
select Custom List from the event source drop-down. We’re creating an event
receiver that will be called by all SPList objects that use the Custom List template.

 5. The Handle The Following Events checkbox list lets us select which events we want
to handle in our event receiver. For our demonstration, choose An Item Is Being
Added and An Item Was Added.

 6. Click Finish to create the event receiver.

 The SharePoint customization Wizard will add a file named ListEventReceiver.cs to
the solution containing the following code (comments removed for brevity):

 public class ListEventReceiver : SPItemEventReceiver
 {
 public override void ItemAdding(SPItemEventProperties properties)
 {
 base.ItemAdding(properties);
 }
 public override void ItemAdded(SPItemEventProperties properties)
 {

the settings so that we can understand how they relate to the concepts that we
discussed earlier.

Chapter 8 Application Services Overview 161

P
a

rt
 I

II

 base.ItemAdded(properties);
 }
 }

 From this code snippet, we can see that our event receiver is derived from
the SPItemEventReceiver base class, and both of the defined methods accept
SPItemEventProperties objects as parameters.

 7. Update the ItemAdding method with the following code:

public override void ItemAdding(SPItemEventProperties properties)
 {
 switch (properties.AfterProperties["Title"].ToString())
 {
 case "Cancel Me":
 properties.Status = SPEventReceiverStatus.CancelNoError;
 break;
 case "Update Me":
 properties.AfterProperties["Title"] = "Updated title";
 break;
 case "Throw Error":
 properties.ErrorMessage = "An error occurred";
 properties.Status = SPEventReceiverStatus.CancelWithError;
 break;
 case "Redirect":
 properties.RedirectUrl = "/_layouts/gear.aspx";
 properties.Status = SPEventReceiverStatus.CancelWithRedirectUrl;
 break;
 default:
 break;
 }
 }

 8. Deploy the event receiver by choosing Build | Deploy DemoEventReceivers.

This simple example demonstrates a few of the key features of synchronous event
handlers. By adding a new item to the Test List that we created earlier with the title set to
Cancel Me, the page will be refreshed and no item will be stored in the list. This illustrates
how we can cancel an action by setting the SPItemEventProperties.Status property
appropriately.

By creating a new item with the title set to Update Me, the event handler updates the
title value before the item is stored in the content database.

Setting the title to Throw Error or Redirect illustrates the capability to return a custom
error message to the user and to redirect to a custom page. In both of these cases, the item
is not added to the list.

 1. Now update the ItemAdded method with the following code:
 public override void ItemAdded(SPItemEventProperties properties)
 {
 Thread.Sleep(5000);
 properties.ListItem.Delete();
 }

162 PART III Application Services

 2. Deploy the updated event receiver by choosing Build | Deploy
DemoEventReceivers.

With our revised ItemAdded event receiver, we can see the difference between a
synchronous event and an asynchronous event. In the code snippet, the calling thread is
put to sleep for a few seconds before execution continues. During this time, the page will
continue to refresh and will show the added item in the list. This demonstrates that the
ItemAdded event receiver is running on a separate thread. Once the thread resumes
execution, it will delete the added item. Since this action occurs on a separate thread, the
results are not immediately visible to the user. This highlights one of the drawbacks of
asynchronous event receivers.

As mentioned earlier, we can configure whether an after event handler runs
synchronously or asynchronously. One easy way to do this is as follows:

 1. In the Elements.xml file, edit the XML as follows:

<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
 <Receivers ListTemplateId="100">
 <Receiver>
 <Name>ListEventReceiverItemAdding</Name>
 <Type>ItemAdding</Type>
 <Assembly>$SharePoint.Project.AssemblyFullName$</Assembly>
 <Class>DemoEventReceivers.ListEventReceiver.ListEventReceiver</Class>
 <SequenceNumber>10000</SequenceNumber>
 </Receiver>
 <Receiver>
 <Name>ListEventReceiverItemAdded</Name>
 <Type>ItemAdded</Type>
 <Assembly>$SharePoint.Project.AssemblyFullName$</Assembly>
 <Class>DemoEventReceivers.ListEventReceiver.ListEventReceiver</Class>
 <SequenceNumber>10000</SequenceNumber>

<Synchronization>Synchronous</Synchronization>
 </Receiver>
 </Receivers>
</Elements>

 Note the addition of the Synchronization element for the
ListEventReceiverItemAdded receiver.

 2. So that we can confirm that our event receiver is being called, update the code in
the ItemAdded method like so:

 public override void ItemAdded(SPItemEventProperties properties)
 {
 Thread.Sleep(5000);
 properties.ListItem.Recycle();
 }

 3. Deploy the updated event receiver by choosing Build | Deploy
DemoEventReceivers.

We can check that our ItemAdded event handler is now running synchronously by
creating a new item. The first thing to note is that when you click the Save button, the page

Chapter 8 Application Services Overview 163

P
a

rt
 I

II

will take a bit longer to refresh than previously, because the Thread.Sleep(5000) instruction
is now running synchronously. When the page is refreshed, the new item will not appear in
the list; by clicking the Recycle Bin link, we can confirm that the item was created and then
moved to the recycle bin by the ItemAdded event receiver.

Enabling or Disabling Event Firing
You’ve seen how to create event handlers using the SharePoint Customization Wizard in
Visual Studio. Let’s look at how we can handle additional events in an existing event
receiver.

 1. In Visual Studio, select the ListEventReceiver item, as shown:

 2. In the Properties pane, set the values for Handle ItemUpdated and Handle
ItemUpdating to True.

164 PART III Application Services

 3. In the ListEventReceiver.cs file, the following additional methods have been added
to handle the ItemUpdated and ItemUpdating events:
 public override void ItemUpdated(SPItemEventProperties properties)
 {
 base.ItemUpdated(properties);
 }

 public override void ItemUpdating(SPItemEventProperties properties)
 {
 base.ItemUpdating(properties);
 }

 As we did earlier, we can now add whatever custom code we need to these method
stubs.

 4. For demonstration purposes, update the ItemUpdated method as follows:

 public override void ItemUpdated(SPItemEventProperties properties)
 {
 int count = 0;
 string title = properties.AfterProperties["Title"].ToString();
 if (title.Contains("Updated Title"))
 {
 count = int.Parse(title.Replace("Updated Title", string.Empty));
 count++;
 }
 properties.ListItem["Title"] = "Updated Title" + count;
 properties.ListItem.Update();
 }

 5. Comment the body of the ItemAdded method to allow new items to be added.

 6. Deploy the updated event receiver, and then edit an existing list item.

 From the preceding code, we might reasonably expect our edited item to have its
title changed to Updated Title0. Another reasonable expectation is that the title
will be continually updated since updating an item within an ItemUpdated event
handler effectively sets up an infinite loop.

 In reality, however, neither of these two possibilities occurs. Instead, the item is
updated ten times and the title remains at Updated Title9.

 This highlights an interesting feature of SharePoint 2010: In previous versions, code
such as this would indeed cause an infinite loop and cause major performance
problems with a server. With SharePoint 2010, protection is built in for this type
of issue.

 Nonetheless, prevention is always better than a cure. Rather than relying on the
platform to handle such coding errors gracefully, you should explicitly prevent them.

 7. Revise the ItemUpdated method as follows:

 public override void ItemUpdated(SPItemEventProperties properties)
 {
 this.EventFiringEnabled = false;
 int count = 0;

Chapter 8 Application Services Overview 165

P
a

rt
 I

II

 string title = properties.AfterProperties["Title"].ToString();
 if (title.Contains("Updated Title"))
 {
 count = int.Parse(title.Replace("Updated Title", string.Empty));
 count++;
 }
 properties.ListItem["Title"] = "Updated Title" + count;
 properties.ListItem.Update();
 this.EventFiringEnabled = true;
 }

After deploying and repeating the test, we can see that our code now behaves as
expected: it updates the item title to Updated Title0.

Binding Events
Fundamentally, you can bind event receivers to event hosts in two ways. The first method,
which is used by the SharePoint Customization Wizard in Visual Studio, is via Collaborative
Application Markup Language (CAML). When an event receiver is added to a SharePoint
project, two files are added to the solution: An Elements.xml file and a code file to contain
the implementation of the event receiver. The Elements.xml file contains XML similar to
this snippet:

<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
 <Receivers ListTemplateId="100">
 <Receiver>
 <Name>ListEventReceiverItemAdding</Name>
 <Type>ItemAdding</Type>
 <Assembly>$SharePoint.Project.AssemblyFullName$</Assembly>
 <Class>DemoEventReceivers.ListEventReceiver.ListEventReceiver</Class>
 <SequenceNumber>10000</SequenceNumber>
 </Receiver>
 </Receivers>
</Elements>

Element files and CAML are covered in more detail in Chapter 19. For the purposes of
binding event receivers, the key thing that you need to know is that each Receivers element
can contain one or more Receiver elements, where a Receiver element defines an event
receiver class.

The second method, which offers a much greater degree of granularity, is to bind event
receivers programmatically. While the CAML method is definitely the easiest to use, it has a
major drawback in that the lowest level of granularity is the list template. To bind an event
receiver to a particular list would require a new list template specific to that list. In our
example, we bound our event receivers to the custom list template (ListTemplateID 100).
In our simple test site, only one list used this template, so this didn’t present a problem.
Let’s see what happens if we add another custom list.

 1. In the test site that we created earlier, add a new custom list named Another
Test List.

 2. Add a new item to the list with the title Throw Error.

166 PART III Application Services

When clicking the Save button, an error page is shown. From this, we can see that our
new list is also calling the event handlers that we configured for our test list. To resolve this
problem, we need to programmatically attach our event receiver to our test list only.

Take the following steps to make this change:

 1. Choose Build | Retract. This will retract our solution from the site, effectively
detaching all event handlers that were attached by our CAML file previously.

 2. In the Solution Explorer pane, right-click the Feature1 node, and then select Add
Event Receiver.

 3. Uncomment the FeatureActivated method and insert the following code:

public override void FeatureActivated(SPFeatureReceiverProperties properties)
 {
 using (SPWeb web = properties.Feature.Parent as SPWeb)
 {
 SPList testList = web.Lists.TryGetList("Test List");
 if (testList != null)
 {
 AssemblyName currentAssembly = Assembly.GetExecutingAssembly().GetName();

 SPEventReceiverDefinitionCollection eventReceivers=testList.EventReceivers;

 SPEventReceiverDefinition itemAdding = eventReceivers.Add();
 itemAdding.Name = "ListEventReceiverItemAdding";
 itemAdding.Type = SPEventReceiverType.ItemAdding;
 itemAdding.SequenceNumber = 10000;
 itemAdding.Assembly = currentAssembly.FullName;
 itemAdding.Class = "DemoEventReceivers.ListEventReceiver.ListEventReceiver";
 itemAdding.Update();
 }
 }
 }

 4. So that the event receiver is removed again when the solution is retracted,
uncomment the FeatureDeactivating method and add the following code:

public override void FeatureDeactivating(SPFeatureReceiverProperties properties)
 {
 using (SPWeb web = properties.Feature.Parent as SPWeb)
 {
 SPList testList = web.Lists.TryGetList("Test List");

 if (testList != null)
 {
 foreach (SPEventReceiverDefinition def in testList.EventReceivers)
 {
 if (def.Name == "ListEventReceiverItemAdding")
 {
 def.Delete();
 }
 }
 }
 }
 }

Chapter 8 Application Services Overview 167

P
a

rt
 I

II

 5. In the Elements.xml file, comment out or delete the Receivers element and its
contents.

 6. Deploy the revised solution.

E-mail Events
One other type of event receiver base class that we haven’t looked at is the
SPEmailEventReceiver. This receiver can be used to handle the EmailReceived event
for a particular document library or list. The first thing to note about e-mail events is that
not all lists and libraries can accept incoming e-mail, and those that can accept it include
document libraries, announcement lists, calendars, and discussion lists. Also, before e-mail
can be sent to a list or library, it must first be configured in Central Administration and
within an organization’s network. This is a relatively in-depth process; for more information,
see http://technet.microsoft.com/en-us/library/cc262947.aspx.

Summary
When it comes to developing custom applications in SharePoint, it’s practically impossible
to get anywhere without having to write a few custom event receivers. As you’ve seen in this
chapter, the event handling functionality of the platform is powerful enough to meet
practically any requirement. Having both synchronous and asynchronous handlers for
many events makes it possible to carry out long-running processes if required while still
having the ability to intercept user actions. With a good understanding of how the overall
event framework hangs together, you can work through the additional chapters in this
section and understand how the event framework is the glue that hooks our behind-the-
scenes application services with the eye candy of our presentation layer.

http://technet.microsoft.com/en-us/library/cc262947.aspx

This page intentionally left blank

9
CHAPTER

169

Service Application
Framework

Previous chapters looked at how web sites and applications are represented within the
SharePoint architecture. We’ve made use of various services such as the Managed Metadata
Service but one thing we haven’t looked at in depth is how these services fit into the overall
architecture of the SharePoint platform. As with most things in SharePoint, a standard
framework is in place for provisioning and using services within a farm: the Service
Application Framework. This chapter examines how the framework hangs together. We’ll
create a simple custom service to illustrate the implications for us as software developers.

Implementation
The Service Application Framework is commonly represented as a new addition in SharePoint
2010. So that you can fully understand how services are provisioned and managed within a
SharePoint farm, we need to look at the overall services architecture. Although new additions
are included in SharePoint 2010, a lot of the underlying framework will be familiar to users of
previous versions of the product.

Server-side Implementation
If you’ve read the preceding chapters, you will be familiar with the notion of a farm within
the SharePoint platform. A farm represents one or more servers that are logically grouped

170 PART III Application Services

Clearly, there’s more to SharePoint than just hosting web sites; much of the additional
functionality, such as the ability to service search queries or functionality for sending and
receiving e-mail, is provided by a range of discrete platform services. Each of these services
is managed at the farm level and is represented within the SharePoint object model as an
object derived from SPService.

In a simple environment with one server, it may be sufficient to have a single object that
allows configuration and management of a single service; however, the SharePoint platform
has been designed to be scalable across many servers, with each server potentially running
one or more instances of a service. As a result, the SharePoint Object Model makes use of
two additional objects to manage services: The SPServiceInstance object represents a single
instance of a service that is installed on a particular server (represented in the object model
by the SPServer object). The SPServiceApplication object represents a single farm-level
instance of a particular service.

For example, within a farm it is possible to run more than one instance of the Managed
Metadata Service. Each instance will have its own configuration, and this configuration,
defined at farm level, is represented by an SPServiceApplication-derived object. Although
we’ve got an object to configure and manage the service at the form level, we need another
object so that we can control the service on individual servers within the farm, and that’s
where the SPServiceInstance-derived object comes in. The SPServiceApplication object is a
new addition in SharePoint 2010, and as you’ll see later, it provides a much greater degree
of flexibility than was available in earlier versions.

Farm 1 Farm 2 Farm 3

Search Excel
Services

Excel
Services

Service Applications

Managed
Metadata
Managed
Metadata

Web Applications

Search User ProfilesUser Profiles

Http://application3Http://application1 Http://application2

together for the purposes of administration, scalability, and reliability. Within the
SharePoint object model, the farm is represented by the SPFarm object.

Chapter 9 Service Application Framework 171

P
a

rt
 I

II

The services architecture within SharePoint is very clever and provides a lot of functionality
out of the box. The SPServiceApplication object (I’ll use this term to also include any object
that’s derived from SPServiceApplication), acts as an endpoint for potentially many server-level
instances of a service. As a result, by making use of the SPServiceApplication object for all calls
into the service, you can easily implement advanced functionality such as load balancing and
fault tolerance. Furthermore, since the configuration of the service is also done at the
SPServiceApplication level, providing backup and restore functionality is also relatively
straightforward.

Client-side Implementation
You’ve seen how services are configured and managed on the server side within a SharePoint
farm. The primary focus of the service object model is on the configuration and management
of services as opposed to the actual implementation. When it comes to physically doing
whatever the service needs to do many implementations are possible, each appropriate
in different situations. For example, the SharePoint Server Search Service makes use of a
Windows Service that can be installed on various servers throughout the farm, whereas the

172 PART III Application Services

Secure Store Service uses a central database to store its data and instead handles requests
in real time on the server where they are received. In both of these cases, and for all
situations where communication is made with a service that’s managed using the Service
Application Framework, communication between client and server occurs via the
SPServiceApplication server object.

From a client perspective, because the SPServiceApplication object is well-defined, you
can create an appropriate matching proxy object. This is represented in the object model
by the SPServiceApplicationProxy object, as shown next. This client/server proxy pattern
makes it easy to develop code that uses a particular service, since a strongly typed proxy
object is readily available that exposes the appropriate functionality. We don’t need to
worry about where the service is running, how it’s implemented, or even how the
SPServiceApplicationProxy object communicates with the SPServiceApplication object;
all we need to know is which methods to call and which parameters to pass in. I’m sure
you’ll agree that this is pretty powerful stuff.

Client Components

SPFarm

Server Components

SPFarm

Services Servers

SPService

Service Instances

SPServer

ServerInstances

SPServiceInstance

SPServiceApplication

ServiceInstances

ServiceProxies

SPServiceProxy

SPServiceApplicationProxy

ApplicationProxies

So the SPServiceApplicationProxy is our entry point into a service application on
the SharePoint platform. This raises the question, How do we pick up a reference to the
appropriate proxy object? More than one instance of a service may be running on a farm,
so how can we be sure that we have the correct one? The answer is the SPServiceProxy
object. As you saw in the discussion of server objects, each service is represented by an
SPService object that in turn provides a collection of SPServiceApplication objects that
each represent a single instance of a service. The same is also true on the client side: the
SPServiceProxy object provides a collection of SPServiceApplicationProxy objects, each
representing a proxy for a single instance of a service.

NOTE I’ve done a lot of talking here about client and server components. It’s important for you to
recognize that on many occasions, both client and server are essentially different aspects of the
same server farm. Both SPServiceProxy objects and SPService objects can be referenced via the
Service and ServiceProxies properties of the SPFarm object.

Chapter 9 Service Application Framework 173

P
a

rt
 I

II

Client/Server Communication
You’ve seen that the communication mechanism between client and server is abstracted by
means of the strongly typed SPServiceApplication and SPServiceApplicationProxy classes. In
fact, the SPServiceApplication and SPServiceApplicationProxy classes are abstract classes—to use
these objects, a concrete implementation must first be created. Out of the box, we can use two
default concrete implementations in our custom applications: SPUsageApplicationProxy,
which is used to communicate with services such as the Web Analytics Data Processing Service
and the SPIisWebServiceApplicationProxy, which is used for all other services. The main
difference between these implementations is the underlying communications mechanism used
between client and server. The SPIisWebServiceApplicationProxy makes use of the Windows
Communication Foundation (WCF) for all communications and therefore offers a high level
of built-in flexibility. This is why it’s used by almost all of the services available on the
SharePoint platform.

NOTE You can create custom implementations of the SPServiceApplicationProxy and SPServiceApplication.
This may be appropriate when communication is being made to a legacy system. In-depth discussion
of this is outside the scope of this chapter, but you can find information at http://msdn.microsoft.com.

Configuring Service Applications
Now that you understand the architecture behind the service application framework, let’s
take a look at how services are configured using the SharePoint user interface. We’ll start by
configuring a service application.

 1. Open SharePoint Central Administration
and select Manage Service Applications
from the Application Management group,
as shown next:

 On the Service Applications page, notice that in the list of services, most services
have an entry for the service application followed by a second entry for the service
application proxy. For example, at the top of the list you may see a service of type
Access Service Web Service Application, followed by a proxy of type Access Service
Web Service Application Proxy. These two entries are represented in the object
model by an SPServiceApplication object and a SPServiceApplicationProxy object,
respectively.

 2. From the Service Applications tab in the ribbon, select New | Managed Metadata
Service. You’ll see a number of services listed in the New menu. Each service is
represented in the object model by an object of type SPService. By selecting a
particular SPService from the list, we’re creating a new SPServiceApplication
instance within the farm.

 3. Type the name of the new Managed Metadata Service: Demo Managed Metadata

Service. Then type the database name as DemoManagedMetadata.

 4. Create a new application pool named DemoAppPool and register a new managed
account if required.

http://msdn.microsoft.com

174 PART III Application Services

A new service of type Managed Metadata Service will be added to the list as well as a
proxy of type Managed Metadata Service Connection. Although the farm contains only
one service of type Managed Metadata Service, you can create many instances, each with a
different configuration, or, in the case of the Managed Metadata Service, a different datastore.

Connecting to Remote Applications
As you’ve seen, both client and server elements of a service are commonly configured
within a single farm. However, you can connect to services hosted on another farm and also
to make services hosted on a farm available for consumption by other farms. Here’s how to
connect to a remote application:

 1. From the list of services, select the Demo Metadata Service that we created earlier.
Don’t click the hyperlink; instead, click the row to select the item.

 2. From the Service Applications tab of the ribbon, click the Publish button, as shown:

 3. By completing the Publish Service Application form, we can make the Demo
Metadata Service available to other trusted farms. The Published URL that’s
automatically generated is required to make a connection. If you have another
farm available, complete the form and click OK; otherwise, click Cancel to return
the Manage Service Applications page.

 4. To connect to a Managed Metadata service that’s hosted on another farm, choose
Connect | Managed Metadata Service Connection from the Service Applications tab
of the ribbon. In the Connect To A Remote Service Application dialog, enter the
Published URL that was automatically generated when publishing the service to
which you want to connect, if appropriate. The items that are listed when the
Connect button is clicked are defined in the object model as objects of type
SPServiceProxy.

Chapter 9 Service Application Framework 175

P
a

rt
 I

II

Topology Service
One of the things you may have noticed in the preceding example is that when connecting
to or publishing a remote service, the Published URL references a service named Topology
.svc. Although I won’t cover the service in depth, I will briefly explain what it does and why.

Although the WCF service name is Topology.svc, within the SharePoint user interface,
the service is referred to as the Application Discovery and Load Balancer Service Application
and can be found in the list of service applications. For brevity, I’ll continue to refer to it as
the “topology service.”

When a service application is published on a farm, the topology service maintains a list
of the service applications that have been published and are available for consumption; in
this respect, it provides application discovery functionality. As well as maintaining a list of
the SPServiceApplications that are available, the service also maintains a list of the individual
SPServiceInstances that are available for each SPServiceApplication. Using this information,
the service is able to load balance incoming requests between available servers in the farm.
For load balancing to work effectively, information on which servers are available must be
passed to the client so that a connection can be made to the next available service instance.
On the consuming farm side, the topology service periodically receives this information
from the publishing farm and makes use of it when creating SPServiceApplicationProxy
objects for the published services.

Demonstration Scenario
Understanding the Service Application Framework, in terms of its function and architecture,
is relatively straightforward. However, taking this information and making use of it in a real
world situation is a bit more involved. Conceptually, the purpose of the Service Application
Framework is to make scalable, enterprise-ready services easy to maintain and consume.
Although the architecture lays out how this will be done, at a nuts-and-bolts level,
implementing this in a practical way introduces a fair amount of complexity.

So that you can properly understand the workings of the framework and make use
of it when creating your own service applications, let’s create a basic translation service.
The service will be configured using the Manage Service Applications section of Central
Administration and will be capable of being used by custom web parts within a site.

Prerequisite: Generating a New AppId
Our scenario makes use of the Microsoft Translation service that’s accessed via Bing.com.
To make use of the Bing.com web service API, we first need to generate a unique AppId
that can be used within our code. To generate a new AppId, follow the process detailed at
www.bing.com/developer.

www.bing.com/developer

176 PART III Application Services

Creating a New SharePoint Project
So that we can easily deploy our custom service to our SharePoint farm, we’ll make use of
the deployment capabilities of Visual Studio 2010.

 1. In Visual Studio, choose File | New | Project. Select Empty SharePoint Project, and
then type TranslatorDemo as the project name, as shown:

 2. In the SharePoint Customization Wizard dialog, enter the URL of the Central
Administration site as the local site to be used for debugging.

 3. Select the Deploy As Farm Solution option, and then click Finish to complete
the wizard.

Adding Server-side Configuration Classes
With our empty project up and running, our next step is to add server-side configuration
classes for our custom service. Earlier I discussed these classes as being derived from
SPService, SPServiceInstance, and SPServiceApplication. Since our service application
will be deployed as a WCF service, we’ll make use of the inherited classes: SPIisWebService,
SPIisWebServiceInstance, and SPIisWebServiceApplication. These classes provide WCF
specific functionality, as you’ll see later.

Chapter 9 Service Application Framework 177

P
a

rt
 I

II

 1. Add a new folder named Server to the project. Within the Server folder, create a
new class named TranslationService.cs. Add the following code:

[System.Runtime.InteropServices.Guid("C9DD4A67-47FB-11D2-83E7-00C04F9902C1")]
public sealed class TranslationService : SPIisWebService
{
 private static TranslationService _local = null;

 public TranslationService()
 { }

 public TranslationService(SPFarm farm) : base(farm)
 {
 this.Name = "TranslationService";
 }

 public static TranslationService Local
 {
 get
 {
 if (TranslationService._local == null)
 {
 TranslationService._local = SPFarm.Local.Services.GetValue
<TranslationService>("TranslationService");
 }

 return TranslationService._local;
 }
 }
 public override void Delete()
 {
 base.Delete();
 _local = null;
 }
 }

 A few things are worth mentioning in this code snippet. First, notice the use of the
Guid attribute and the default public constructor. Many of the classes that are used
for storing and managing configuration data within the SharePoint platform are
derived from SPPersistedObject. SPPersistedObject makes use of serialization to
persist the object to the SharePoint configuration database and therefore requires
a unique Guid for each type and a default constructor. Also notice that the
TranslationService implements a singleton pattern. Each service is defined only
once per farm, so using a singleton makes sense because the object will be retrieved
from the farm’s services collection.

 2. Within the Server folder, add a new class named TranslationServiceApplication.cs.
Add the following code:

[System.Runtime.InteropServices.Guid("0B42E5CF-B5BC-438C-997F-996E61CE572B")]
 class TranslationServiceApplication : SPIisWebServiceApplication
 {

 public TranslationServiceApplication()

178 PART III Application Services

 {
 }

 internal TranslationServiceApplication(string name,
TranslationService service, SPIisWebServiceApplicationPool applicationPool)
 : base(name, service, applicationPool)
 {
 }

 protected override string InstallPath
 {
 get
 {
 return Path.GetFullPath(SPUtility.GetGenericSetupPath(@"WebServices\
TranslatorDemo"));
 }
 }

 protected override string VirtualPath
 {
 get
 {
 return "TranslatorService.svc";
 }
 }

 public override string TypeName
 {
 get
 {
 return "Translation Service Application";
 }
 }
 }

 In this code snippet, notice the overridden InstallPath and VirtualPath properties.
As mentioned, our service will make use of WCF as a communications protocol.
These properties must be overridden to provision correctly the WCF service that
supports our custom service.

 3. Within the Server folder, add a new class named TranslationServiceInstance.cs. Add
the following code:

[System.Runtime.InteropServices.Guid("0B42E5CF-B5BC-438C-997F-996E61CE572D")]
 class TranslationServiceInstance : SPIisWebServiceInstance
 {
 public TranslationServiceInstance()
 {
 }

 internal TranslationServiceInstance(SPServer server,
 TranslationService service) : base(server, service)
 {
 }

 internal TranslationServiceInstance(string name,

Chapter 9 Service Application Framework 179

P
a

rt
 I

II

 SPServer server, TranslationService service)
 : base(server, service)
 {
 }

 public override string TypeName
 {
 get { return "Demo Translation Service"; }
 }
 }

We now have the basics of our server-side configuration object model. TranslationService
represents our service at the farm level, TranslationServiceApplication represents a configured
instance of our service at the farm level, and TranslationServiceInstance represents an instance
of our service running on a particular server within the farm.

Adding Client-side Configuration Classes
Now that we have the basis of our server-side configuration object model, our next logical
step is to add in our client objects.

NOTE For the purposes of this demonstration, we’ll add both client and server within the same
SharePoint project. If the server and client were designed to run on separate farms, a more
appropriate deployment strategy might be to create two separate projects, allowing client and
server binaries to be installed independently.

 1. Add a new folder named Client to the project. Within the Client folder, create a
new class named TranslationServiceApplicationProxy.cs. Add the following code:

[System.Runtime.InteropServices.Guid("0B42E5CF-B5BC-438C-997F-996E61CE572C")]
 class TranslationServiceApplicationProxy : SPIisWebServiceApplicationProxy
 {
 public TranslationServiceApplicationProxy()
 {
 }

 public TranslationServiceApplicationProxy(string name,
 SPIisWebServiceProxy serviceProxy, Uri serviceEndpointUri)
 : base(name, serviceProxy, serviceEndpointUri)
 {
 }

 internal TranslationServiceApplicationProxy(string name,
 SPIisWebServiceProxy serviceProxy,
 TranslationServiceApplication serviceApplication)
 : base(name, serviceProxy, serviceApplication.Uri)
 {
 }

 public override string TypeName
 {
 get
 {

180 PART III Application Services

 return "Translation Service Application Proxy";
 }
 }
 }

 2. Add another class to the Client folder named TranslationServiceProxy.cs. Add the
following code:

 [System.Runtime.InteropServices.Guid("0B42E5CF-B5BC-438C-997F-996E61CE572E")]
class TranslationServiceProxy : SPIisWebServiceProxy,
 IServiceProxyAdministration
 {

 private static TranslationServiceProxy _local;

 public TranslationServiceProxy()
 {
 }

 internal TranslationServiceProxy(SPFarm farm)
 : base(farm)
 {
 this.Name = "TranslationServiceProxy";
 }

 public static TranslationServiceProxy Local
 {
 get
 {
 if (TranslationServiceProxy._local == null)
 {
 TranslationServiceProxy._local =
 SPFarm.Local.ServiceProxies.GetValue<TranslationServiceProxy>(
 "TranslationServiceProxy");
 }

 return TranslationServiceProxy._local;
 }
 }

 public override void Delete()
 {
 base.Delete();
 _local = null;
 }
 public SPServiceApplicationProxy CreateProxy(Type serviceApplication
ProxyType, string name, Uri serviceApplicationUri, SPServiceProvisioningContext
provisioningContext)
 {
 return new TranslationServiceApplicationProxy(name, this, service
ApplicationUri);
 }

 public SPPersistedTypeDescription GetProxyTypeDescription(Type
serviceApplicationProxyType)
 {
 return new SPPersistedTypeDescription(

Chapter 9 Service Application Framework 181

P
a

rt
 I

II

 "Translation Web Service Proxy",
 "Connects to the Translation Web Service.");
 }

 public Type[] GetProxyTypes()
 {
 return new Type[] { typeof(TranslationServiceApplicationProxy) };
 }
 }

Adding Windows Communication Foundation Components
With our client- and server-side components up and running, we can move on to look at
how to deploy a WCF endpoint that can be used to communicate between client and server.

 1. Generally speaking, WCF endpoints should be installed within the %SPRoot%\
WebServices folder. (See Chapter 2 for details on configuring the %SPRoot%
variable.) So that we can have our Visual Studio project automatically deploy to
the WebServices folder, we first need to add a SharePoint Mapped folder. Choose
Project | Add SharePoint Mapped Folder. Then select WebServices from the dialog.

 2. In the WebServices mapped folder that’s been added to the Visual Studio project,
create a new folder named TranslatorDemo. This new folder will ensure that our
deployed files don’t conflict with files already installed on the server.

 3. Right-click the new TranslatorDemo folder and choose Add | New Item. Select
WCF Service from the Visual C# category, as shown. Name the new service
TranslatorService.cs.

182 PART III Application Services

 4. Delete the app.config file that’s automatically added to the project, and then create
a new web.config file in the TranslatorDemo folder. Add the following XML to the
web.config file:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.serviceModel>
 <services>
 <service
 name="TranslatorDemo.WebServices.TranslatorDemo.TranslatorService">
 <endpoint
 address=""
 binding="basicHttpBinding"
 bindingConfiguration="TranslatorServiceHttpBinding"
contract="TranslatorDemo.WebServices.TranslatorDemo.ITranslatorService" />
 </service>
 </services>
 <bindings>
 <basicHttpBinding>
 <binding
 name="TranslatorServiceHttpBinding">
 </binding>
 </basicHttpBinding>
 </bindings>
 </system.serviceModel>
 <system.webServer>
 <security>
 <authentication>
 <anonymousAuthentication enabled="true" />
 <windowsAuthentication enabled="true" />
 </authentication>
 </security>
 </system.webServer>
</configuration>

 At the time of writing, Visual Studio RC doesn’t automatically create a .svc file. This
may be resolved in the final version of the product. If not, you’ll need to create a
text file named TranslatorService.svc manually and add the following code:

<%@ Assembly Name="$SharePoint.Project.AssemblyFullName$"%>
<% @ServiceHost
Service="TranslatorDemo.WebServices.TranslatorDemo.TranslatorService"
Factory="TranslatorDemo.ApplicationHostFactory" %>

 5. We’re using token replacement to insert the details of our assembly automatically
into the WCF service file when the project is built. At the time of writing, token
replacement in SharePoint projects doesn’t replace tokens in files with an .svc
extension. To remedy this, we can manually modify the project file. Open the
project file TranslatorDemo.cspoj using Notepad. Before the closing Project

tag at the end of the file, add the following XML element:

<PropertyGroup>
<TokenReplacementFileExtensions>$(TokenReplacementFileExtensions);svc;
</TokenReplacementFileExtensions>
</PropertyGroup>

Chapter 9 Service Application Framework 183

P
a

rt
 I

II

 6. From our .svc file, we can see that our WCF service makes use of a ServiceHostFactory
class. In the WebServices folder, add a new class named ApplicationHostFactory.cs.
Add the following code:

namespace TranslatorDemo
{
 internal sealed class ApplicationHostFactory : ServiceHostFactory
 {
 public override ServiceHostBase CreateServiceHost(string
constructorString, Uri[] baseAddresses)
 {
 return new ApplicationHost(baseAddresses);
 }
 }
}

 7. As well as a host factory, we also need to add a host class. Create a new class file
named ApplicationHost.cs in the TranslatorDemo folder. Add the following code:

namespace TranslatorDemo.WebServices.TranslatorDemo
{
 class ApplicationHost:ServiceHost
 {
 internal ApplicationHost(params Uri[] baseAddressess)
 : base(typeof(TranslatorService), baseAddressess)
 {
 }
 }
}

Implementing Translation Functionality
Now that we have set up most of the plumbing for our service, we can do a bit of work
to implement our translation functionality. For the purposes of this demonstration,
our service will simply accept an input string in English and will make use of Microsoft
Translator to convert the text to French before returning the converted string to the caller.

 1. We need to modify the contract for our WCF server to accept the correct
parameters. In the ITranslatorService.cs class, change the source code like so:

 [ServiceContract]
 public interface ITranslatorService
 {
 [OperationContract]
 string Translate (string input);
 }
}

 2. With the contract changed, we can now update the implementation. Update the
code in TranslatorService.cs as follows:

 public class TranslatorService : ITranslatorService
 {
 public string Translate (string input)

184 PART III Application Services

 {
 throw new NotImplementedException();
 }
 }

 3. Before we can add an implementation, we need a service reference to the Microsoft
Translator service. Choose Project | Add Service Reference. In the Address box,
type http://api.microsofttranslator.com/V2/Soap.svc, and then click Go. Type
the Namespace Microsoft.Translator, and then click OK to create the reference:

 4. With the reference in place, update the implementation as shown next. Note the
apiKey variable, which should contain a valid Bing API key discussed in the section
“Prerequisite: Generating a New AppId.”

 public string Translate (string input)
 {
 BasicHttpBinding binding = new BasicHttpBinding();

 EndpointAddress address = new EndpointAddress("http://
api.microsofttranslator.com/v2/Soap.svc");
 Microsoft.Translator.LanguageServiceClient client = new
Microsoft.Translator.LanguageServiceClient(binding, address);

 string apiKey = "Enter Your Bing API Key here";
 string output = string.Empty;
 output=client.Translate(apiKey, input, "en", "fr");
 return output;
 }
 }

http://api.microsofttranslator.com/V2/Soap.svc

Chapter 9 Service Application Framework 185

P
a

rt
 I

II

NOTE Since we’ve adopted the namespace Microsoft.Translator for our service reference, it may be
necessary to add using Microsoft.Translator to the code file. Visual Studio can do this automatically
if you press SHIFT-ALT-F10 when the cursor is on a reference to the Microsoft.Translator object.

Installing Service Application Components
Service Application components can be installed in several different ways. The simplest
method is to create a feature that will programmatically install the server and client
components for the application when activated.

NOTE For more information on features, see Chapter 19.

 1. In the Solution Explorer pane, right-click the Features node and select Add
Feature. Set the scope of the feature to Farm and type the title Demo Translation

Service, as shown here:

186 PART III Application Services

 2. So that we can add custom code that will execute when the feature is activated,
right-click the Feature1 node and select Add Event Receiver. Uncomment the
FeatureActivated override and add the following code:

public override void FeatureActivated(SPFeatureReceiverProperties properties)
 {
 TranslationService svc = TranslationService.Local;

 if (svc == null)
 {
 svc = new TranslationService(SPFarm.Local);
 svc.Update();
 svc.Provision();
 }

 TranslationServiceProxy proxy = TranslationServiceProxy.Local;

 if (proxy == null)
 {
 proxy = new TranslationServiceProxy(SPFarm.Local);
 proxy.Update(true);
 proxy.Provision();
 }
 }

 3. Although it’s not strictly necessary, we’ll also add some code to clean up our service
application when the feature is deactivated. When developing services, having
clean-up code is a good idea because it removes orphaned configuration information
from the SharePoint configuration database that would be difficult to clean up
otherwise. Uncomment the FeatureDeactivating override and add the following code:

 public override void FeatureDeactivating(SPFeatureReceiverProperties properties)
 {
 TranslationService svc = TranslationService.Local;

 if (svc != null)
 {
 svc.Unprovision();

 foreach (var instance in svc.Instances)
 {
 instance.Unprovision();
 instance.Delete();
 }

 foreach (var application in svc.Applications)
 {
 application.Unprovision();
 application.Delete();
 }
 svc.Delete();
 }
 TranslationServiceProxy proxy = TranslationServiceProxy.Local;

Chapter 9 Service Application Framework 187

P
a

rt
 I

II

 if (proxy != null)
 {
 foreach (var appProxy in proxy.ApplicationProxies)
 {
 appProxy.Unprovision();
 appProxy.Delete();
 }
 proxy.Delete();
 }
 }

 4. Our project is now in a state where it can be built and deployed to SharePoint.
To create and deploy the package, choose Build | Deploy TranslatorDemo. If all is
well, the package will be built and deployed to the farm. You can confirm that the
package has deployed successfully by opening Central Administration and then
selecting Manage Farm Features from the System Settings section. Our Demo
Translation Service feature will appear in the list and should be activated.

Provisioning Service Application Instances
You’ve seen how to install both client and server components for our service. Before we
can actually use the service, however, we need to provision a new instance of our service.
As discussed earlier in the chapter, this instance will be represented by an object of type
SPServiceApplication—in our case, this will be the server-side TranslationServiceApplication
object.

To configure our TranslationServiceApplication, we need details of the application pool
under which the service will run. In this section, we’ll work through the steps necessary to
create a user interface that will allow us to capture this information and make use of it to
provision the application.

As you saw earlier, service applications are usually provisioned by clicking the New
button on the Manage Service Applications page. Integration with the functionality
available on the Manage Service Applications page is done by implementing the
IServiceAdministration interface on the service class.

 1. Open the TranslationService.cs file and amend the class definition to implement
the IServiceAdministration interface, as this code snippet shows:

[System.Runtime.InteropServices.Guid("C9DD4A67-47FB-11D2-83E7-00C04F9902C1")]
 public sealed class TranslationService : SPIisWebService,
 IServiceAdministration

 2. Add the following additional code to the TranslationService.cs file to implement
the methods required by the IServiceAdminstration interface:

 #region IServiceAdministration Implementation

 public SPServiceApplication CreateApplication(string name,
 Type serviceApplicationType,
 SPServiceProvisioningContext provisioningContext)
 {

188 PART III Application Services

 throw new NotImplementedException();
 }

 public SPServiceApplicationProxy CreateProxy(string name,
 SPServiceApplication serviceApplication,
 SPServiceProvisioningContext provisioningContext)
 {
 return new TranslationServiceApplicationProxy(name,
 TranslationServiceProxy.Local,
 (TranslationServiceApplication)serviceApplication);
 }

 public SPPersistedTypeDescription GetApplicationTypeDescription(
 Type serviceApplicationType)
 {
 return new SPPersistedTypeDescription(
 "Translation Service Application",
 "Demonstration Translation Service application.");
 }

 public Type[] GetApplicationTypes()
 {
 return new Type[] { typeof(TranslationServiceApplication) };
 }

 #endregion

Adding a Create Application Dialog
Although we’ve added the code required to provision a service application, we still need
to capture parameters required for the configuration of the application. So that we can
present a user interface for this, we can override the GetCreateApplicationLink method of
the base SPService class, allowing us to return a custom URL to which users will be directed
when creating an instance of our service.

 1. Add the following method to the TranslationService.cs class:

 public override SPAdministrationLink GetCreateApplicationLink
(Type serviceApplicationType)
 {
 return new SPAdministrationLink("/_admin/TranslatorDemo/
CreateService.aspx");
 }

 2. So that we can create a page that will be automatically deployed to the %SPRoot%/
Template/Admin folder, we need to add another SharePoint-mapped folder to our
project. Choose Project | Add SharePoint Mapped Folder, and then select
Template/Admin from the dialog.

 3. In the Admin folder, add a new folder named TranslatorDemo.

 4. In the TranslatorDemo folder, add a new Application Page named CreateService.
aspx, as shown:

Chapter 9 Service Application Framework 189

P
a

rt
 I

II

CAUTION Application Pages are automatically added to the Layouts folder. After the Admin/
TranslatorDemo folder has been created, drag the page into the folder.

 Because we want our CreateService page to appear as a dialog rather than a standard
page, we need to make a few changes to the generated HTML, since dialog pages
use a different master page and therefore have different placeholders.

 5. Edit the Page tag by deleting the DynamicMasterPageFile attribute and replacing it
with this:

MasterPageFile="~/_layouts/dialog.master"

 6. Delete the auto-generated content tags and replace them with this:

<asp:Content ID="Content1" ContentPlaceHolderID="PlaceHolderDialogHeaderPageTitle"
 runat="server">
 <asp:Literal ID="CreateAppTitle"
 Text="Translation Service Application" runat="server" />
</asp:Content>
<asp:Content ID="Content2"
 ContentPlaceHolderID="PlaceHolderDialogDescription"
 runat="server">
 <asp:Literal ID="CreateAppDesc"
 Text="Create a new Translation service application"
 runat="server" />
</asp:Content>
<asp:Content ID="Content3" ContentPlaceHolderID="PlaceHolderDialogBodyMainSection"
 runat="server">
 Hello World!
 <SharePoint:FormDigest ID="FormDigest1" runat="server" />
</asp:Content>

190 PART III Application Services

We can now deploy our project to see the effects of our changes. If we navigate to
the Manage Service Applications page in Central Administration, we’ll be able to select
Translation Service Application from the New button drop-down in the Service Applications
tab. Our new CreateService page will be shown in a dialog ready to receive user input.

Capturing Application Pool Details
The SharePoint platform provides a number of user controls that can be used for capturing
user input. If you use these controls rather than building input forms from scratch, it’s
much easier to maintain a uniform user experience throughout the application. For our
CreateService page, we’ll use three such user controls.

 1. Directly following the Page element in the CreateService.aspx page, add the
following tags:

<%@ Register TagPrefix="wssuc" TagName="InputFormSection"
 Src="/_controltemplates/InputFormSection.ascx" %>
<%@ Register TagPrefix="wssuc" TagName="InputFormControl"
 Src="/_controltemplates/InputFormControl.ascx" %>
<%@ Register TagPrefix="wssuc" TagName="IisWebServiceApplicationPoolSection"
 Src="~/_admin/IisWebServiceApplicationPoolSection.ascx" %>

 2. Replace the Hello World text that we added to the Content3 content control with the
following code:

 <table class=propertysheet border="0" width="100%"
 cellspacing="0" cellpadding="0" id="diidProjectPageOverview">
 <wssuc:InputFormSection Title="Name"
 Description="Specify the name for this service application instance."
 runat="server">
 <template_inputformcontrols>
 <wssuc:InputFormControl LabelText=""
LabelAssociatedControlID="m_asAppName" runat="server">
 <Template_control>
 <SharePoint:InputFormTextBox
title="Name" class="ms-input" ID="m_asAppName" Columns="35"
Runat="server" MaxLength=256 />
 <SharePoint:
InputFormRequiredFieldValidator ID="m_asAppNameValidator"
 ControlToValidate="m_asAppName"
 ErrorMessage="Required field"
 width=’300px’
 Runat="server"/>
 <SharePoint:InputFormCustomValidator ID="m_uniqueNameValidator"
 ControlToValidate="m_asAppName"
 OnServerValidate="ValidateUniqueName"
 runat="server" />
 </Template_control>
 </wssuc:InputFormControl>
 </template_inputformcontrols>
 </wssuc:InputFormSection>
 <wssuc:IisWebServiceApplicationPoolSection
id="m_applicationPoolSection" runat="server" />

Chapter 9 Service Application Framework 191

P
a

rt
 I

II

 <wssuc:InputFormSection Title="Set as Default"
Description="" runat="server">
 <template_inputformcontrols>
 <wssuc:InputFormControl LabelText=""
 LabelAssociatedControlID="m_default"
 runat="server">
 <Template_control>
 <asp:CheckBox ID="m_default" Runat="server"
Text="Set this instance as the default Translation service application."
 Title="Set as Default" checked="true" />
 </Template_control>
 </wssuc:InputFormControl>
 </template_inputformcontrols>
 </wssuc:InputFormSection>
 </table>

 3. With our controls in place, we can move on to work on the code-behind. In the
CreateService.aspx.cs file, add the following code:

 public partial class CreateService : LayoutsPageBase
 {
 protected void CancelButtonClick(object sender, EventArgs e)
 {
 this.SendResponseForPopUI();
 }

 protected void OkButton_Click(object sender, EventArgs e)
 {
 if (this.Page.IsValid)
 {
 this.CreateNewServiceApp();
 this.SendResponseForPopUI();
 }
 }

 protected override void OnInit(EventArgs e)
 {
 base.OnInit(e);
 ((DialogMaster)this.Page.Master).OkButton.Click +=
 new EventHandler(this.OkButton_Click);
 }

 private void CreateNewServiceApp()
 {
 using (SPLongOperation operation = new SPLongOperation(this))
 {
 operation.Begin();
 try
 {
 string name = this.m_asAppName.Text.Trim();

 TranslationServiceApplication serviceApplication =
 CreateServiceApplication(name);

192 PART III Application Services

 TranslationServiceApplicationProxy proxy =
 CreateServiceApplicationProxy(name, serviceApplication);

 if (this.m_default.Checked)
 {
 SPServiceApplicationProxyGroup group =
 SPServiceApplicationProxyGroup.Default;
 group.Add(proxy);
 group.Update(true);
 }
 }
 catch (Exception ex)
 {
 throw new SPException("Failed to create service application", ex);
 }
 }
 }

 private TranslationServiceApplicationProxy CreateServiceApplicationProxy
(string name,
 TranslationServiceApplication serviceApplication)
 {
 SPServiceApplicationProxy proxy =
TranslationService.Local.CreateProxy(name, serviceApplication, null);
 proxy.Update(true);
 proxy.Provision();
 return proxy as TranslationServiceApplicationProxy;
 }

 private TranslationServiceApplication CreateServiceApplication(string name)
 {
 SPIisWebServiceApplicationPool appPool = null;

 if (this.m_applicationPoolSection != null)
 {
 appPool = (this.m_applicationPoolSection as
IisWebServiceApplicationPoolSection).GetOrCreateApplicationPool();
 }
 TranslationServiceApplication serviceApplication =
new TranslationServiceApplication(name, TranslationService.Local, appPool);
 serviceApplication.Update();
 serviceApplication.AddServiceEndpoint(string.Empty,
 SPIisWebServiceBindingType.Http);
 serviceApplication.Update(true);
 serviceApplication.Provision();
 return serviceApplication;
 }

 protected void ValidateUniqueName(object sender, ServerValidateEventArgs e)
 {
 string name = this.m_asAppName.Text.Trim();
 TranslationServiceApplication applicationByName = TranslationService.
Local.Applications.GetValue<TranslationServiceApplication>(name);
 bool flag = true;
 if (applicationByName != null)

Chapter 9 Service Application Framework 193

P
a

rt
 I

II

 {
 flag = false;
 }
 e.IsValid = flag;
 this.m_uniqueNameValidator.ErrorMessage =
 "The specified service application name is already in use.";
 }
 }

You should notice a few things in this code snippet. First, the use of SPLongOperation
in CreateNewServiceApp. When lengthy operations are performed on page post backs,
wrapping the code to be executed with a SPLongOperation object provides the user with
an “In Progress” display and prevents timeouts from occurring. Using this approach is
considered good practice for all configuration changes. The second thing to notice is the
provisioning of the WCF service endpoint in the CreateServiceApplication method. The
SPIisWebServiceApplication base class defines the AddServiceEndpoint method, which can
be used to store endpoint configuration at the application level. When service instances are
created, the endpoint configuration is replicated to each instance automatically.

Provisioning Service Instances
Although we now have enough code to capture the parameters required for our application
and provision both the application and an appropriate proxy, we still need to do some work
to ensure that service instances are created for our application. We can do this by overriding
the Provision and Unprovision methods in our TranslationServiceApplication class.

 1. In the TranslationServiceApplication.cs file, add the following code:

 #region Service Instance Provisioning

 public override void Provision()
 {
 base.Provision();
 TranslationServiceInstance inst = SPServer.Local.ServiceInstances.
OfType<TranslationServiceInstance>().FirstOrDefault();
 if (inst == null)
 {
 inst = new TranslationServiceInstance(SPServer.Local,
 this.Service as TranslationService);
 inst.Name = "TranslationServiceInstance";
 inst.Update();
 inst.Provision();
 }
 this.Update();
 }

 public override void Unprovision(bool deleteData)
 {
 base.Status = SPObjectStatus.Unprovisioning;
 this.Update();
 if (this.Service.Applications.Count == 1)
 {
 SPServiceInstance inst = this.ServiceInstances.FirstOrDefault();
 if (inst != null)
 {

194 PART III Application Services

 inst.Unprovision();
 inst.Delete();
 }
 }
 base.Unprovision(deleteData);
 base.Status = SPObjectStatus.Disabled;
 this.Update();
 }
 #endregion

NOTE In this code snippet, we’re provisioning a single service instance for all service applications. In
effect, the service instance is used to start and stop the service on individual servers. In some
circumstances, it may be appropriate to create a separate service instance for each service
application allowing more granular control. By overriding the Provision and Unprovision methods,
we can implement service instances in a manner that exactly meets our specific requirements.

 2. We’ve now got everything we need to deploy and configure our custom service
application. Choose Build | Deploy TranslatorDemo. As before, we can now create
a new Translation Service Application from the Manage Service Application page.
Our CreateService page contains the required controls to capture a unique name
and an appropriate application pool, as shown:

Chapter 9 Service Application Framework 195

P
a

rt
 I

II

 3. Navigate to the Manage Services On Server page in Central Administration, and
notice that a new service named Demo Translation Service has been added, as
shown next, allowing us to start and stop the service on a particular server.

To see how the service has actually been implemented, use IIS Manager. Choose Start |
Administrative Tools | Internet Information Services (IIS) Manager. Expand the SharePoint
Web Services site to see a number of applications, which are the various service endpoints
used by the Service Application Framework. Click through the list of endpoints, to find one
containing our TranslatorService.svc endpoint, as shown here:

196 PART III Application Services

Using Service Application in Front-end Components
We’ve done most of the work to build and deploy a custom service application. To see the
fruits of our labor in action, our next step is to create a simple web part that will make use
of our service.

 1. Add a new Visual Web Part to our SharePoint project by choosing Project | Add
New Item. Select Visual Web Part from the dialog and name of the web part
TranslationWebPart.

 2. A user control file named TranslationWebPartUserControl.ascx will be added to the
project automatically. Add the following code to the user control file:

<asp:TextBox ID="OriginalText" runat="server"></asp:TextBox>
<asp:Button ID="Translate" runat="server" Text="Translate"
 OnClick="Translate_Click" />
<asp:TextBox ID="TranslatedText" runat="server"></asp:TextBox>

 3. In the code-behind file for the user control (TranslationWebPartUserControl.ascx.
cs), add the following code:

 public partial class TranslationWebPartUserControl : UserControl
 {
 protected void Translate_Click(object sender, EventArgs e)
 {
 TranslationServiceApplicationProxy proxy =
SPServiceContext.Current.GetDefaultProxy(typeof(TranslationServiceApplicationProxy))
as TranslationServiceApplicationProxy;
 TranslatedText.Text=proxy.Translate(OriginalText.Text);
 }
 }

This code snippet makes use of SPServiceContext to retrieve the default service proxy
that matches our translation service. With a reference to a proxy object, the code then calls
the Translate method to retrieve the appropriate results.

Calling Service Applications
As the code stands at the moment, an error will be flagged in Visual Studio, because the
Translate method does not yet exist on the proxy class. Let’s move on to look at how that
can be implemented.

Our TranslationServiceProxy class currently contains a basic implementation of a proxy
class. However, it doesn’t contain any custom methods that can be used to invoke the
functionality of our custom application. Since we’re using WCF as our communications
mechanism, we first need to create a WCF proxy class. We can create this class by creating
an instance of the service and then using svcutil.exe to generate the proxy automatically.
However, for the purposes of this demo, we can manually create it as follows:

 1. In the Client folder, add a new class named TranslationServiceClient.cs. Add the
following code:

using System.ServiceModel;

[ServiceContractAttribute(ConfigurationName="ITranslatorService")]

Chapter 9 Service Application Framework 197

P
a

rt
 I

II

public interface ITranslatorService
{
 [OperationContractAttribute(
Action="http://tempuri.org/ITranslatorService/Translate",
ReplyAction="http://tempuri.org/ITranslatorService/TranslateResponse")]
 string Translate(string input);
}
public interface ITranslatorServiceChannel : ITranslatorService,
IClientChannel
{
}
internal class TranslatorServiceClient : ClientBase<ITranslatorService>,
 ITranslatorService
{
 public TranslatorServiceClient()
 { }
 public TranslatorServiceClient(string endpointConfigurationName) :
 base(endpointConfigurationName)
 { }
 public TranslatorServiceClient(string endpointConfigurationName,
 string remoteAddress) :
 base(endpointConfigurationName, remoteAddress)
 { }
 public TranslatorServiceClient(string endpointConfigurationName,
 System.ServiceModel.EndpointAddress remoteAddress) :
 base(endpointConfigurationName, remoteAddress)
 { }
 public TranslatorServiceClient(System.ServiceModel.Channels.Binding
binding, System.ServiceModel.EndpointAddress remoteAddress) :
 base(binding, remoteAddress)
 { }
 public string Translate(string input)
 {
 return base.Channel.Translate(input);
 }
}

 2. In the TranslationServiceApplicationProxy.cs file, add the following code:

 private SPRoundRobinServiceLoadBalancer _balancer;

 ~TranslationServiceApplicationProxy()
 {
 if (_balancer != null)
 {
 _balancer.Unprovision();
 }
 }

 internal SPRoundRobinServiceLoadBalancer LoadBalancer
 {
 get
 {
 if (_balancer == null)

198 PART III Application Services

 {
 _balancer = new SPRoundRobinServiceLoadBalancer(this.
ServiceEndpointUri);
 _balancer.Provision();
 }
 return _balancer;
 }
 }

 public string Translate(string input)
 {

 BasicHttpBinding binding = new BasicHttpBinding();
 SPRoundRobinServiceLoadBalancerContext ctx = LoadBalancer
.BeginOperation() as SPRoundRobinServiceLoadBalancerContext;
 EndpointAddress address = new EndpointAddress(ctx.EndpointAddress);
 TranslatorServiceClient client =
 new TranslatorServiceClient(binding, address);

 string output= client.Translate(input);
 ctx.EndOperation();
 return output;
 }

This code snippet makes use of the SPRoundRobinServiceLoadBalancer. Earlier in the
chapter, the workings of the topology service were covered, along with how a proxy service
could query the topology service for a list of endpoints for a particular service and then make
use of the list to provide load-balancing capabilities. The SPIisWebServiceApplicationProxy
class on which our proxy is based requires that this type of functionality be implemented.
Although the class exposes a ServiceEndpointUri property, the value returned is not the URI
of a particular endpoint, but is the URI for the service application—only by using the topology
service can a list of real endpoints be retrieved. The SPRoundRobinServiceLoadBalancer
handles this automatically, and as you can see from the code, it will provide an appropriate
endpoint address for each operation.

We’re now ready to build and deploy our sample application. As before, choose Build |
Deploy TranslatorDemo in Visual Studio. After the project has been deployed, navigate to
the Manage Service Applications page in Central Administration and create a new instance
of the Translation Service Application. With the service up and running, we can add our
custom web part to a page and check that things are working as expected.

NOTE Because we set up our project to target the Central Administration site for debugging, the web part
will not be installed on other site collections. In a real-world situation, our web part would be created
in a separate project and deployed to front-end servers.

If all is well, our web part will be displayed and will translate text as shown:

Chapter 9 Service Application Framework 199

P
a

rt
 I

II

Managing Service Applications
So far, we’ve created, installed, and provisioned service applications. One important area
that hasn’t been covered is how to manage existing applications. In this section, we’ll look
at how we can add a management page for our translation service and how we can pick
up properties gathered from our management page and make use of them in the
implementation of our service.

In much the same way that we added our CreateService page earlier, adding a
management page is also a case of overriding a method. This time it’s the ManageLink
method on the SPServiceApplication class.

TIP You can also add a configuration page for the SPServiceApplicationProxy class if required by
overriding the ManageLink method on the SPServiceApplicationProxy class.

 1. In the TranslationServiceApplication.cs class, add the following code:

public override SPAdministrationLink ManageLink
 {
 get
 {
 string linkWithQuerystring =
 string.Concat("/_admin/TranslatorDemo/ManageService.aspx?appid=",
 this.Id.ToString());
 return new SPAdministrationLink(linkWithQuerystring);
 }
 }

 public string AlternativeLanguage { get; set; }

 2. Add a new Application Page to the Admin/TranslatorDemo folder. Name the page
ManageService.aspx.

 3. This time, we’ll use the default master page rather than showing the page as a pop-
up dialog. Add the following code to the page:

<%@ Register TagPrefix="wssuc" TagName="InputFormSection"
 Src="/_controltemplates/InputFormSection.ascx" %>
<%@ Register TagPrefix="wssuc" TagName="InputFormControl"
 Src="/_controltemplates/InputFormControl.ascx" %>
<%@ Register TagPrefix="wssuc" TagName="ButtonSection"
 Src="/_controltemplates/ButtonSection.ascx" %>

200 PART III Application Services

<asp:Content ID="PageHead"
 ContentPlaceHolderID="PlaceHolderAdditionalPageHead"
 runat="server">
</asp:Content>
<asp:Content ID="Main" ContentPlaceHolderID="PlaceHolderMain"
 runat="server">
 <table class="propertysheet" border="0" width="100%"
 cellspacing="0" cellpadding="0"
 id="diidProjectPageOverview">
 <wssuc:InputFormSection Title="Alternative Language"
Description="Enter an alternative language code for this service.
Examples include: fr,no,pl,en,it"
 runat="server">
 <template_inputformcontrols>
<wssuc:InputFormControl LabelText="" LabelAssociatedControlID="LanguageCode"
runat="server">
<Template_control>
<SharePoint:InputFormTextBox title="Language Code" class="ms-input"
ID="LanguageCode" Columns="35" Runat="server" MaxLength=256 />
</Template_control>
</wssuc:InputFormControl>
</template_inputformcontrols>
 </wssuc:InputFormSection>
 <wssuc:ButtonSection runat="server">
 <template_buttons>
<asp:Button runat="server" class="ms-ButtonHeightWidth"
OnClick="UpdateButton_Click" Text="<%$Resources:wss,multipages_okbutton_text%>"
id="updateButton" accesskey="<%$Resources:wss,okbutton_accesskey%>"/>
</template_buttons>
 </wssuc:ButtonSection>
 </table>
</asp:Content>
<asp:Content ID="PageTitle"
ContentPlaceHolderID="PlaceHolderPageTitle" runat="server">
 Manage Translation Service
</asp:Content>
<asp:Content ID="PageTitleInTitleArea"
ContentPlaceHolderID="PlaceHolderPageTitleInTitleArea"
 runat="server">
 Manage Translation Service
</asp:Content>

 4. Add the following code to the code-behind file (ManageService.aspx.cs):

public partial class ManageService : LayoutsPageBase
 {
 private Guid _appId;
 protected void Page_Load(object sender, EventArgs e)
 {
 string appId=this.Request.QueryString["appId"];
 if (!string.IsNullOrEmpty(appId))
 {
 _appId = new Guid(appId);
 updateButton.Enabled = true;
 }

Chapter 9 Service Application Framework 201

P
a

rt
 I

II

 else
 {
 updateButton.Enabled = false;
 }
 }

 protected void UpdateButton_Click(object sender, EventArgs e)
 {
 TranslationServiceApplication app=TranslationService.Local.Applications
.GetValue<TranslationServiceApplication>(this.AppId);
 app.AlternativeLanguage = LanguageCode.Text;
 app.Update();
 }

 public Guid AppId
 {
 get
 {
 return _appId;
 }
 }
 }

We’ve now implemented our ManageService page. By deploying the application
and creating a new instance of the Translation Service Application, we can see that our
application name now appears as a hyperlink in the Manage Service Application page
in Central Administration and the Manage button is enabled in the ribbon when our
application is selected. By navigating to the Manage Translation Service page, we have
the option to configure an alternative language, as shown here:

Reading Service Application Properties
Although we’ve implemented a user interface to capture properties for our custom
application, our service implementation needs to be modified to make use of these
properties.

In the TranslatorService.cs file, update the Translate method as follows:

 public string Translate(string input)
 {

202 PART III Application Services

 BasicHttpBinding binding = new BasicHttpBinding();

 EndpointAddress address =
new EndpointAddress("http://api.microsofttranslator.com/v2/Soap.svc");
 Microsoft.Translator.LanguageServiceClient client =
new Microsoft.Translator.LanguageServiceClient(binding, address);

 string apiKey = "Your Bing API key goes here";
 string output = string.Empty;
 string language = "fr";

 TranslationServiceApplication app=
TranslationServiceApplication.Current as TranslationServiceApplication;

 if (!string.IsNullOrEmpty(app.AlternativeLanguage))
 {
 language = app.AlternativeLanguage;
 }

 output=client.Translate(apiKey, input, "en", language);

 return output;
 }

With this final code change in place, we can deploy our application and confirm
that everything works as expected. By changing the alternative language value in our
ManageService page, we can control which language is used for translations for all users
of our service.

Summary
This chapter looked at the Service Application Framework in SharePoint 2010. From
an architecture perspective, the Service Application Framework appears relatively
straightforward. However, when it comes down to using it to implement services, a fair
amount of code must be written. Despite the overhead in terms of coding for the service
designer, the upside of the Service Application Framework is that it’s easy to use to create
client applications and tools. Client applications can make use of scalable, enterprise-ready
custom services by using only a single line of code.

From a deployment and configuration perspective, the Service Application Framework
offers a number of hooks into the SharePoint Central Administration interface. This makes
our custom services much easier to use by SharePoint administrators because of the
commonality with other services.

It can take awhile to master service applications, but given the benefits of this highly
flexible architecture, it’s well worth your efforts.

10
CHAPTER

203

Word Automation
Services

In Office 2007, Microsoft introduced a new file format called OpenXML. As an ECMA
(European Computer Manufacturers Association) standard, OpenXML is well documented
and open to all developers to use as they see fit on all platforms.

One of the immediate benefits of this innovation is that it allows the programmatic
creation and modification of Microsoft Office files such as Word documents and Excel
spreadsheets. Before OpenXML, the only way to create or modify these documents was to
automate the appropriate client application. Although this works well in a client scenario,
performing such automation on a server is prone to problems. Using OpenXML, particularly
with SharePoint, allows developers to create composite Office documents easily using
server-side code and return the finished results to users in a format that can be used by
most common Office applications. Having said that, however, certain actions can’t be
performed using OpenXML. Because OpenXML is simply an XML-based file format,
none of the capabilities of the client application are available. Performing actions such
as repagination or updating dynamic content isn’t possible via OpenXML. As a result,
developers requiring this type of functionality are required to go down the client
application automation route with its attendant issues.

With SharePoint 2010, Microsoft picked up on this shortfall and introduced a new
application service known as Word Automation Services. This chapter takes a look at this new
service and discusses how you can leverage OpenXML to create custom line-of-business
applications.

Word Automation Services
Word Automation Services is available as a service application in SharePoint Server 2010.
Three components make up the overall architecture:

Front-end object model• In Chapter 9, you saw how the architecture of the
framework allows for the generation of proxy classes that can be used on the front

204 PART III Application Services

end to access the underlying service. The Word Automation Services object model
is an example of such proxy classes.

Document queue• The Word Automation Services application makes use of a
central database to maintain a queue of jobs being processed. Each job may contain
one or more documents. The primary function of the service application is to write
items to the queue and to retrieve details of the status of current jobs.

Word Automation Services engine• The real work behind Word Automation
Services occurs in a separate rendering engine that is capable of rendering Word
documents and providing a range of features such as file format conversions,
dynamic data updates, and repagination. The output of the rendering engine
is then stored in the SharePoint content database as a new document.

Creating Conversion Jobs
From a front-end object model perspective, the primary interface to Word Automation
Services is the ConversionJob class. The following code snippet shows how to create a job
to convert a document to a PDF format:

SPFile temp = folder.Files.Add("temp.docx", mem, true);
SPServiceApplicationProxy proxy=SPServiceContext.Current.GetDefaultProxy(
 typeof(WordServiceApplicationProxy));
ConversionJob convJob = new ConversionJob(proxy.Id);
convJob.Name = "Document Assembly";
convJob.UserToken = SPContext.Current.Web.CurrentUser.UserToken;
convJob.Settings.UpdateFields = true;
convJob.Settings.OutputFormat = SaveFormat.PDF;
convJob.Settings.OutputSaveBehavior = SaveBehavior.AlwaysOverwrite;
string siteUrl = SPContext.Current.Site.Url + "/";
string outputUrl = siteUrl + temp.Url.Replace(".docx", ".pdf");
convJob.AddFile(siteUrl + temp.Url, outputUrl);
convJob.Start();

Determining which action should be performed on all documents within a job
is a job for the ConversionJobSettings class. The following class view shows the main
properties:

Chapter 10 Word Automation Services 205

P
a

rt
 I

II

Checking Status of Conversion Jobs
In Word Automation Services, document processing actually occurs in a separate process,
and all jobs are queued for processing. As a result of this, determining the status of a
submitted job is an important requirement when it comes to designing an application
that makes use of the service.

We can retrieve the status of a submitted job by querying the ConversionJob object
that we used to create the job. Effectively, a ConversionJob object is passed as a Windows
Communication Foundation (WCF) message from client to server; on the server side, after
the job has been written to the document queue database, a job identifier is returned to the
client. The identifier can be obtained by querying the ConversionJob.JobId property.

206 PART III Application Services

Because conversion jobs can take a long time to complete, common practice is to store
the job identifier for later use. A separate process can then periodically check on the status
of the job, as the following snippet shows:

string ConversionJobId = SPContext.Current.ListItem.GetFormattedValue(
 "ConversionJobId");

 if (!string.IsNullOrEmpty(ConversionJobId))
 {
WordServiceApplicationProxy proxy = SPServiceContext.Current.GetDefaultProxy(
typeof(WordServiceApplicationProxy)) as WordServiceApplicationProxy;

 ConversionJobStatus status = new ConversionJobStatus(
 proxy, new Guid(ConversionJobId), null);

 if (status.Count == status.Succeeded + status.Failed)
 {
 //Job Completed
 }
 else
 {
 //Job in progress
 }
 }

OpenXML
As described at the beginning of this chapter, OpenXML is an XML-based file format that’s
supported by applications in the Microsoft Office 2007 suite and later. Although an in-depth
discussion on all aspects of OpenXML is beyond the scope of this chapter, we’ll take a look
at a few of the key objects and work through an example showing how the technology can
be used when building SharePoint applications.

NOTE Although OpenXML files are XML-based and can therefore be created and modified by using the
various XML manipulation classes that are present in the .NET Framework, Microsoft provides an
OpenXML SDK to make it easier to deal with the complex document structure in managed code. It
can be downloaded from www.microsoft.com/downloads/details.aspx?FamilyId=C6E744E5-36E9-
45F5-8D8C-331DF206E0D0&displaylang=en.

Getting Started with OpenXML
OpenXML documents are in fact ZIP files. Each ZIP archive contains a collection of XML
files and other elements. Relationships exist among the different XML files stored within
the archive, and these relationships are defined in XML format in files with a .rels file
extension.

TIP To see how an OpenXML archive is structured, try renaming a .docx file to .zip and then open it with
Windows Explorer.

www.microsoft.com/downloads/details.aspx?FamilyId=C6E744E5-36E9-45F5-8D8C-331DF206E0D0&displaylang=en
www.microsoft.com/downloads/details.aspx?FamilyId=C6E744E5-36E9-45F5-8D8C-331DF206E0D0&displaylang=en

Chapter 10 Word Automation Services 207

P
a

rt
 I

II

Many of the files in the archive serve a particular function. For example, the fontTable
.xml file contains details of the fonts that are in use within a document. Word documents
store an XML file named document.xml; if you examine this file, you’ll see most of the
user-generated content.

Dealing with each of the individual files and maintaining references between them by
using standard XML processing components such as XmlDocument and XPathNavigator
is certainly possible. However, it should be apparent from looking at the number of files
involved that such an approach is no trivial undertaking. With that in mind, we’ll continue
our discussion with a focus on the object model provided by the OpenXML SDK.

Within the OpenXML object model, a document is represented by a class derived from
the OpenXmlPackage class. A document is actually a ZIP archive containing many files, and
each of these files is defined as an object derived from OpenXmlPart. For example, the main
document element in a Word file can be referenced by examining the MainDocumentPart
property of a WordProcessingDocument object. WordProcessingDocument inherits from
OpenXmlPackage and MainDocumentPart inherits from OpenXmlPart.

Each OpenXmlPart is made up of one or more OpenXmlElement objects, which in
turn can contain OpenXmlAttribute objects. Naturally, these are abstract objects and
specific implementations will often be used when processing a document. For example,
when adding a Caption to a WordProcessingDocument object, an instance of the
WordProcessing.Caption class will be used.

Demonstration Scenario
To give you an idea of how OpenXML and Word Automation Services can be used together
to build useful line-of-business applications, consider the following demonstration scenario:

You’ve been engaged by AdventureWorks to design and build a document creation
and collaboration tool. The tool will be used by the company’s sales department for
producing sales proposals. Each proposal is made up of a number of different
documents contributed by various users from different departments. The tool to be
built should combine these documents into a single read-only document that can
be sent to the customer for consideration.

The input documents will be saved in Microsoft Word OpenXML format. The output
document should be in Adobe Acrobat (PDF) format.

Architecture
You need to consider the following points to create an architecture that fits this scenario:

Multiple documents will logically make up a single set. Bearing this in mind, we can •
use the Document Set functionality discussed in Chapter 6.

By using OpenXML, we can combine a number of different types of documents •
into a single OpenXML document.

Word Automation Services can be used to convert the output OpenXML document •
into an Adobe Acrobat–compatible file.

208 PART III Application Services

Because the process of combining documents is likely to be long-running, we have •
two possibilities: we could use the SPLongOperation object, which will present the
user with the familiar spinning disc image while the process runs. Or we could use
a custom job on the server, which will free up the user to perform other activities
while the process completes. For the purposes of our demonstration, we’ll use
the custom job approach since it illustrates functionality that is useful in many
development situations.

Bearing these points in mind, we can create a custom content type that derives from the
Document Set content type. We’ll then develop a custom web part control that will provide
a user interface for combining the contents of our custom content set. To do the actual
combination, we’ll create a custom job that uses OpenXML and Word Automation Services
to put the finished document together and convert the output to PDF.

Creating a Custom Content Type
First we’ll create a new bank site and then provision the Document Set content type before
we add a custom content type and define our user interface.

 1. From the Site Actions menu, create a new Blank Site named Chapter 10, as shown:

 2. As described in detail in Chapter 6, enable the Document Sets feature. From the
Site Actions menu, select Site Settings | Go To Top Level Site Settings | Site Collection
Features. Activate the Document Sets feature.

 3. We’ll next add a custom content type for our Sales
Proposal. Navigate back to the blank site that we
created earlier (http://<ServerName>/Chapter10).
From the Site Actions menu, select Site Settings. In
the Galleries section, select Site Columns, as shown.

Chapter 10 Word Automation Services 209

P
a

rt
 I

II

 4. Create a new column named JobId of type Single Line Of Text. Save the column in
the Custom Columns group.

 5. Create a new column named TemplateUrl of type Single Line Of Text. Save the
column in the Custom Columns group.

 6. Navigate back to the Site Settings page, and then select Site Content Types from the
Galleries section.

 7. Create a new content type named Sales Proposal. Set the Parent Content Type field
to Document Set and save it within the Custom Content Types group, as shown:

 8. With our new content type created, we can add in the site columns that we created
earlier. In the Columns section, click Add From Existing Site Columns. From the
Custom Columns group, add the JobId and the TemplateUrl columns. Click OK to
commit the changes.

NOTE We’ve largely skipped over content types and site columns here. For a more in-depth look, see
Chapter 13.

210 PART III Application Services

Customizing the DocumentSetProperties Web Part
Before we can customize the welcome page for our custom document set, we need to build
a web part with the following additional features:

A Build Sales Proposal button that creates and starts the compilation job•

A status indicator that shows the progress of the compilation job•

A link to the compiled output file•

Although we could create a separate web part that could be used in conjunction with
the built-in DocumentPropertiesWebPart, it wouldn’t be overly useful as a stand-alone
component elsewhere. Instead, we’ll create a web part that inherits from the
DocumentPropertiesWebPart and adds our required additional functionality.

 1. Using Visual Studio 2010, create a new Empty SharePoint Project named
SalesProposalApplication, as shown:

 2. Set the debugging site to be the blank site that we created in the preceding section,
and select the Deploy As Farm Solution option. Click Finish to create the project.

 3. After the project has been created, add a new Visual Web Part named
SalesProposalPropertiesWebPart.

As you saw in Chapter 7, Visual Web Parts provide a design surface when we’re creating
web parts. However, since we’re planning to override a built-in web part that already has its
own rendering logic, we need to change some of the generated code for the Visual Web Part.

 1. Add a reference to the Microsoft.Office.DocumentManagement assembly, located
in the %SPROOT%isapi folder, to the project.

Chapter 10 Word Automation Services 211

P
a

rt
 I

II

 2. In the SalesProposalPropertiesWebPart.cs file, add the following code:

using System.ComponentModel;
using System.Web.UI;
using Microsoft.Office.Server.WebControls;

namespace SalesProposalApplication.SalesProposalPropertiesWebPart
{
 [ToolboxItemAttribute(false)]
 public class SalesProposalPropertiesWebPart : DocumentSetPropertiesWebPart
 {
 // Visual Studio might automatically update
 //this path when you change the Visual Web Part project item.
 private const string _ascxPath =
@"~/_CONTROLTEMPLATES/SalesProposalApplication/SalesProposalPropertiesWebPart/
SalesProposalPropertiesWebPartUserControl.ascx";

 protected override void CreateChildControls()
 {
 Control control = this.Page.LoadControl(_ascxPath);
 this.Controls.Add(control);
 base.CreateChildControls();
 }

 protected override void RenderWebPart(HtmlTextWriter writer)
 {
 base.RenderWebPart(writer);
 this.Controls[0].RenderControl(writer);
 }
 }
}

TIP When overriding any built-in SharePoint classes, it can be challenging to work out exactly what you
need to do to get the behavior that you expect. In the code snippet, to get our web part to render
properly, we explicitly need to render our custom user control by overriding RenderWebPart method.
Uncovering details such as this from the documentation is often impossible, and this is where
Reflector Pro, discussed in Chapter 2, is invaluable.

With our custom user control properly hooked up to our web part, we can implement
the rest of our custom logic via the user control.

 1. We’ll make use of Asynchronous JavaScript and XML (AJAX) so that the web part
can periodically check on the status of the timer job and redraw the controls. Add
an UpdatePanel control to the SalesProposalPropertiesWebPartUserControl.ascx
file.

 2. We’ll use an AJAX Timer so that we can automatically refresh the status indicator
on our control. Drag the Timer control from the toolbox onto the user control
design surface. Name the Timer RefreshTimer and set its Enabled property to False.

212 PART III Application Services

 3. From the toolbox, add a Label control, a Hyperlink control, and a Button control
to the SalesProposalPropertiesWebPartUserControl.ascx file. Within the UpdatePanel
control markup, lay out and rename the controls as follows:

<asp:UpdatePanel runat="server">
 <ContentTemplate>
 <div width="100%">

 <asp:Label ID="StatusLabel" runat="server" Text=""></asp:Label>

 <asp:HyperLink ID="OutputHyperlink" runat="server">
 Click here to download a compiled copy</asp:HyperLink>

 <asp:Button ID="StartCompilation" OnClick="StartCompilation_Click"
 runat="server" Text="Start Compilation" />
 </div>
 </ContentTemplate>
 <Triggers>
 <asp:AsyncPostBackTrigger ControlID="RefreshTimer" EventName="Tick" />
 </Triggers>
</asp:UpdatePanel>
<asp:Timer runat="server" ID="RefreshTimer" Enabled="False">
</asp:Timer>

 4. In the code-behind file (SalesProposalPropertiesWebPartUserControl.aspx.cs), add
the following code:

 public partial class SalesProposalPropertiesWebPartUserControl : UserControl
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 RedrawUI();
 }

 private void RedrawUI()
 {
 if (SPContext.Current.ListItem != null)
 {
 string ConversionJobId =
 SPContext.Current.ListItem.GetFormattedValue("JobId");

 if (!string.IsNullOrEmpty(ConversionJobId))
 {

 OutputHyperlink.NavigateUrl =
 SPContext.Current.RootFolderUrl + "/temp.pdf";

 SPJobHistory history = (from j in
 SPFarm.Local.TimerService.JobHistoryEntries
 where j.JobDefinitionId.ToString() == ConversionJobId
 orderby j.StartTime descending
 select j

Chapter 10 Word Automation Services 213

P
a

rt
 I

II

).FirstOrDefault();

 if (history != null)
 {
 StatusLabel.Text = history.Status.ToString();
 if (history.Status == SPRunningJobStatus.Succeeded)
 {
 OutputHyperlink.Visible = true;
 StartCompilation.Enabled = true;
 RefreshTimer.Enabled = false;
 }
 else if (history.Status == SPRunningJobStatus.Failed |
 history.Status == SPRunningJobStatus.Aborted)
 {
 OutputHyperlink.Visible = false;
 StartCompilation.Enabled = true;
 RefreshTimer.Enabled = false;
 }
 else
 {
 OutputHyperlink.Visible = false;
 StartCompilation.Enabled = false;
 RefreshTimer.Enabled = true;
 }
 }
 else
 {
 StatusLabel.Text = "Processing";
 OutputHyperlink.Visible = false;
 StartCompilation.Enabled = false;
 RefreshTimer.Enabled = true;
 }
 }
 }
 else
 {
 OutputHyperlink.NavigateUrl = "#";
 OutputHyperlink.Visible = true;
 StatusLabel.Text = "My Status";
 StartCompilation.Enabled = false;
 }
 }
 protected void StartCompilation_Click(object sender, EventArgs e)
 {
 throw new NotImplementedException();
 }

Before our customized web part can be deployed, we need to make a few changes to the
solution. The default packaging mechanisms that are set up in Visual Studio work well for
creating web parts that are derived directly from System.Web.UI.WebControls.Webparts.
Webpart. However, when creating a web part that’s derived from another base class, we’ll
occasionally see an “Incompatible Web Part Markup” error message when we’re trying to

214 PART III Application Services

use the deployed web part on a page. To resolve this error, we need to use an alternative
packaging format.

 1. Rename the SalesProposalPropertiesWebPart.webpart file to
SalesProposalPropertiesWebPart.dwp.

 2. Replace the contents with the following XML:

<WebPart xmlns="http://schemas.microsoft.com/WebPart/v2">
<Assembly>
$SharePoint.Project.AssemblyFullName$
</Assembly>
 <TypeName>
SalesProposalApplication.SalesProposalPropertiesWebPart.SalesProposalPropertiesWebPart
</TypeName>
 <Title>SalesProposalPropertiesWebPart</Title>
 <Description>Web Part Description</Description>
</WebPart>

 3. So that the renamed file is installed properly, edit the Elements.xml file in the
SalesProposalPropertiesWebPart folder as follows:

<?xml version="1.0" encoding="utf-8"?>
<Elements xmlns="http://schemas.microsoft.com/sharepoint/" >
 <Module Name="SalesProposalPropertiesWebPart" List="113"
 Url="_catalogs/wp">
 <File Path="SalesProposalPropertiesWebPart\SalesProposalPropertiesWebPart.dwp"
 Url="SalesProposalPropertiesWebPart.dwp"
 Type="GhostableInLibrary" >
 <Property Name="Group" Value="Custom" />
 </File>
 </Module>
</Elements>

Creating a Custom Job Definition
With our user interface largely complete, our next step is to define a custom job that
will compile all documents in our document set and send the compiled output to Word
Automation Services for conversion to PDF.

In Visual Studio, add a new class named DocumentCombinerJob.cs. Add the following
code to the file:

 public class DocumentCombinerJob : SPJobDefinition
 {
 [Persisted]
 private Guid _siteId;
 [Persisted]
 private Guid _webId;
 [Persisted]
 private Guid _folderId;
 [Persisted]
 private Guid _proxyId;

 public DocumentCombinerJob()

Chapter 10 Word Automation Services 215

P
a

rt
 I

II

 : base()
 {
 }

 public DocumentCombinerJob(SPListItem documentSet)
 : base("Combine Documents" + Guid.NewGuid().ToString(),
 SPFarm.Local.TimerService, null, SPJobLockType.None)
 {
 _siteId = documentSet.Web.Site.ID;
 _webId = documentSet.Web.ID;
 _folderId = documentSet.Folder.UniqueId;
 _proxyId = SPServiceContext.Current.GetDefaultProxy(
 typeof(WordServiceApplicationProxy)).Id;
 Title = "Combine Documents - " + documentSet.Folder.Url;
 }

 protected override bool HasAdditionalUpdateAccess()
 {
 return true;
 }
 }

Developers familiar with SharePoint 2007 should notice a few interesting elements
in this code snippet. First, check out the HasAdditionalUpdateAccess override. In
previous versions of SharePoint, only farm administrators could create jobs. This greatly
restricted their usefulness for offloading ad hoc tasks. With SharePoint 2010, where the
HasAdditionalUpdateAccess method returns true, any user can create a job.

Also notice that when we’re creating a job, the job can be associated with either a service
or an application pool. These associations are primarily for administrative purposes since
most jobs run via the SPTimerV4 service. In our example, we’re associating our custom job
with the TimerService.

The final thing to notice is that job definitions are serialized when a job is created. As
a result, not all types of objects can be defined as properties. For example, the SPListItem
isn’t serializable and therefore can’t be stored as a property. To get around this problem,
we’re storing a number of identifiers that can be used to recover a reference to the
appropriate SPListItem object when the job is deserialized.

Combine Documents Using OpenXML
Before we can make use of OpenXML, we need to add a reference to the OpenXML SDK
binaries:

 1. Download and install the OpenXML SDK; then, in Visual Studio, add a reference
to the DocumentFormat.OpenXML assembly.

 2. Add a reference to the WindowsBase assembly.

 3. To prevent any confusion between similarly named objects within the OpenXML
SDK, add the following Using statement to the DocumentCombinerJob.cs file:

using Word = DocumentFormat.OpenXml.Wordprocessing;

216 PART III Application Services

 4. In the DocumentCombinerJob.cs file, add the following code:

public override void Execute(Guid targetInstanceId)
 {
 using (SPSite site = new SPSite(_siteId))
 {
 using (SPWeb web = site.OpenWeb(_webId))
 {
 SPFolder folder = web.GetFolder(_folderId);

 SPListItem documentSet = folder.Item;

 SPFile output = CombineDocuments(web, folder, documentSet);

 ConvertOutput(site, web, output);
 }
 }
 }

 private SPFile CombineDocuments(SPWeb web, SPFolder folder,
 SPListItem documentSet)
 {
 char[] splitter = { '/' };
 string[] folderName = folder.Name.Split(splitter);
 string templateUrl = documentSet.GetFormattedValue("TemplateUrl1");
 SPFile template = web.GetFile(templateUrl);
 byte[] byteArray = template.OpenBinary();
 using (MemoryStream mem = new MemoryStream())
 {
 mem.Write(byteArray, 0, (int)byteArray.Length);
 using (WordprocessingDocument myDoc =
 WordprocessingDocument.Open(mem, true))
 {
 MainDocumentPart mainPart = myDoc.MainDocumentPart;
 foreach (Word.SdtElement sdt in
 mainPart.Document.Descendants<Word.SdtElement>().ToList())
 {
 Word.SdtAlias alias =
 sdt.Descendants<Word.SdtAlias>().FirstOrDefault();
 if (alias != null)
 {
 string sdtTitle = alias.Val.Value;
 if (sdtTitle == "MergePlaceholder")
 {
 foreach (SPFile docFile in folder.Files)
 {
 if (docFile.Name.EndsWith(".docx"))
 {
 if (docFile.Name != "temp.docx")
 {
 InsertDocument(mainPart, sdt, docFile);
 Word.PageBreakBefore pb = new Word.PageBreakBefore();
 sdt.Parent.InsertAfter(pb, sdt);
 }
 }
 }
 sdt.Remove();

Chapter 10 Word Automation Services 217

P
a

rt
 I

II

 }
 }
 }
 }
 SPFile temp = folder.Files.Add("temp.docx", mem, true);
 return temp;
 }
 }

 protected int id = 1;

 void InsertDocument(MainDocumentPart mainPart, Word.SdtElement sdt,
 SPFile filename)
 {
 string altChunkId = "AIFId" + id;
 id++;
 byte[] byteArray = filename.OpenBinary();

 AlternativeFormatImportPart chunk = mainPart.AddAlternativeFormatImportPart(
AlternativeFormatImportPartType.WordprocessingML, altChunkId);
 using (MemoryStream mem = new MemoryStream())
 {
 mem.Write(byteArray, 0, (int)byteArray.Length);
 mem.Seek(0, SeekOrigin.Begin);
 chunk.FeedData(mem);
 }
 Word.AltChunk altChunk = new Word.AltChunk();
 altChunk.Id = altChunkId;
 OpenXmlElement parent = sdt.Parent.Parent;
 parent.InsertAfter(altChunk, sdt.Parent);
 }

 private void ConvertOutput(SPSite site, SPWeb web, SPFile output)
 {
 throw new NotImplementedException();
 }

In this code snippet, the CombineDocuments method loads a Microsoft Word format
template. The code then searches for all content controls within the document, and where
the content control has a title of MergePlaceholder, the contents of all files with a .docx
extension within the document set are merged into the template. The merge process makes
use of the AlternativeFormatImportPart control to merge contents. This control inserts a
binary copy of data into the template at a specific position. When the completed document
is rendered in a client application, the merge is performed dynamically each time the
document is opened.

Converting an OpenXML Document to an Alternative Format
Before we can make use of Word Automation Services in our application, we need to add a
reference to the appropriate assembly:

 1. In Visual Studio, add a reference to Microsoft.Office.Word.Server.dll. At the time of
writing, this appears in the Add Reference dialog as one of two components named
Microsoft Office 2010 component; this problem may be resolved in the final release.

218 PART III Application Services

 2. Update the ConvertOutput method in DocumentTimerJob.cs as follows:

 private void ConvertOutput(SPSite site, SPWeb web, SPFile output)
 {
 ConversionJob convJob = new ConversionJob(_proxyId);
 convJob.Name = "Document Assembly";
 convJob.UserToken = web.CurrentUser.UserToken;
 convJob.Settings.UpdateFields = true;
 convJob.Settings.OutputFormat = SaveFormat.PDF;
 convJob.Settings.OutputSaveBehavior = SaveBehavior.AlwaysOverwrite;
 string webUrl = web.Url + "/";
 convJob.AddFile(webUrl + output.Url, webUrl + output.Url.Replace(".docx", ".pdf"));
 convJob.Start();
 Guid jobId = convJob.JobId;
 ConversionJobStatus status = new ConversionJobStatus(_proxyId, jobId, null);
 while (status.Count != (status.Succeeded + status.Failed))
 {
 Thread.Sleep(3000);
 status.Refresh();
 }
 if (status.Failed == status.Count)
 {
 throw new InvalidOperationException();
 }

 With our custom job definition completed, we can change the implementation in
our user interface to create a new instance of the job.

 3. In SalesProposalWebPartUserControl.ascx.cs, change the StartCompilation_Click
method as follows:

 protected void StartCompilation_Click(object sender, EventArgs e)
 {
 SPListItem current = SPContext.Current.ListItem;

 current["JobId"] = string.Empty;
 current.Update();

 DocumentCombinerJob job = new DocumentCombinerJob(current);

 job.Update();
 job.RunNow();

 current["JobId"] = job.Id;
 current.Update();

 RedrawUI();
 }

We’ve now completed the code required to implement our demonstration scenario.
Deploy the project by selecting Deploy SalesProposalApplication from the Build menu.

Chapter 10 Word Automation Services 219

P
a

rt
 I

II

Customizing Document Set Welcome Page
As you saw in Chapter 6, each document set has a welcome page that contains a list of the
documents within the set as well as information about the set itself. The web part that we
created earlier will be used to customize the welcome page for our Sales Proposal document
set so that whenever the content type is used, our custom control will be displayed instead
of the built-in DocumentSetProperties control.

 1. Navigate to the Chapter 10 site that we created earlier. Select Site Settings from the
Site Actions menu.

 2. Select Site Content Types from the Galleries section and then click the Sales
Proposal content type.

 3. Select the Document Set settings link in the Settings section and then, in the
Welcome Page section, click the Customize the Welcome Page link, as shown here:

 4. From the Page tab in the ribbon, select Edit Page.

 5. Delete the Document Set Properties web part, and then click the Add a Web Part
link in Zone 2 to show the web part selector.

 6. Add the SalesProposalPropertiesWebPart from the Custom category, as shown:

 7. Click Stop Editing to commit the changes to the welcome page.

220 PART III Application Services

Create a Document Library
Before we can begin creating sales proposals, we need to create a new document library
that is bound to our Sales Proposal content type.

 1. From the Site Actions menu, select New Document Library. Name the new library
Sales Proposals.

 2. After the new library has been created, select Library Settings from the Library tab
of the ribbon.

 3. In the Document Library Settings page, select Advanced Settings, and then select
the Allow Management Of Content Types option. Click OK to save the changes.

 4. From the Content Types section, click Add From Existing Site Content Types, and
then select the Sales Proposal content type, as shown. Click OK to save the changes.

Create a Document Template
Our final step before we can see our document set functionality in action is to create a
template for our compilation process. Since we need to add Content Controls to our
template document, we can create the document using Visual Studio.

 1. To our SalesProposalApplication solution, add a new project of type Word 2010
Document, as shown. Name the project SampleTemplate.

Chapter 10 Word Automation Services 221

P
a

rt
 I

II

 2. Drag a RichTextContentControl onto the SampleTemplate.docx file. Type the Title
property as MergePlaceholder, as shown:

222 PART III Application Services

 3. Close the SampleTemplate.docx pane in Visual Studio, and then save the project.

 4. Right-click the project node and select Open Folder in Windows Explorer.

 5. Create a new document library named Document Templates and upload the
SampleTemplate.docx file.

TIP When you select the Upload Document | Upload Multiple Documents option from the Documents
tab, the file can be uploaded by dragging and dropping it onto the dialog box.

We can now make use of our Sales Proposals document set to create a composite
document.

 1. Navigate to the Sales Proposals document library, and then select New Document |
Sales Proposal from the Documents tab of the ribbon.

 2. In the New Document Set: Sales Proposal dialog, enter the URL of the sample
template in the TemplateUrl box.

 3. Upload a few Word documents to the document set, and then click the Start
Compilation button. If all is well, after a few minutes a link will appear as shown,
allowing us to download a PDF copy of the compiled sales proposal:

Summary
This chapter demonstrated how we can create custom solutions by combining the capabilities
of Microsoft Office 2010 and SharePoint Server 2010. By leveraging tools such as OpenXML
and application services such as Word Automation Services, we can perform extensive
processing on documents that have been created using tools with which users are already
familiar.

Workfl ow

CHAPTER

11

223

Although Windows Workflow Foundation (WF) is one of the most important technologies
included in the .NET Framework, it hasn’t quite hit the prime time in terms of developer
adoption, because it requires a whole load of plumbing before it can be used effectively.
It’s possible to use the default runtime WF implementation out of the box, but a fair bit of
work is required to incorporate that into a real-world application.

This is where SharePoint comes into its own as an application development platform. It
provides a runtime engine for WF as well as seamless communication between the SharePoint
Object Model and the actual workflow itself. One of MOSS 2007’s biggest drawbacks was its
inability to communicate with external processes using Workflow. In SharePoint 2010, this
limitation no longer exists, and as you’ll see in this chapter, creating and hosting workflows
using SharePoint lets you build powerful and scalable business applications easily.

Workflow Foundation Fundamentals
Before delving into how workflows can be used in SharePoint, you should get familiar with
WF and the key concepts and structures involved.

What is a workflow? Perhaps the easiest way to answer this question is to illustrate how
a workflow differs from the traditional applications on which we developers spend most of
our time.

Workflows are declarative—that is, they focus on what should be done rather than how
to do it. This has a significant implication: Determining what should be done within an
organization is a role performed by business users as opposed to developers, and exactly
what should be done often changes as business priorities change. As developers, we’re very
aware of this problem since it often leads to a constant shifting of deliverables when it
comes to developing line-of-business applications. By adopting a workflow-based approach,
organizations can change business processes simply by amending the workflows that define
them.

Secondly, workflows are long running and stateful. You may be thinking that most
business applications are long running and stateful, but there is an important difference

224 PART III Application Services

with workflows: The management of state and the processing of interactions with running
workflows is handled automatically by the runtime engine. Although building business
applications that maintain state is common practice, such an implementation will usually
involve a lot of custom code. The same is also true for managing interactions with long-
running processes. There is a fundamental difference between using workflows and traditional
application development, and it all comes down to perspective. When building traditional
applications, we focus on handling events and managing data; with workflows, the focus is on
the actual process logic with event handling and data management handled automatically.

Types of Workflow
You can host two types of workflow using SharePoint: sequential workflows and state
machine workflows. A sequential workflow is probably the most common type of workflow.
State machine workflows are not widely used within organizations.

Sequential Workflow
This type of workflow commonly manifests itself as a business process and is the muse of
many a Visio artist the world over. Sequential workflows generally have a single starting
point and follow a series of sequential steps before reaching a discrete stopping point.

Consider the expenses approval workflow, for example. An employee completes an
expenses claim document. Completing the document starts an approvals workflow that sees
the document being sent to a manager for approval. Once the manager has approved the
document, it is automatically passed to the accounts department for payment. When the
claim has finally been paid, the workflow is concluded. This business process follows a series
of steps toward a final conclusion and is therefore typical of a sequential workflow.

State Machine Workflow
A common perception, possibly arising from the assumptions of the various process
improvement methodologies, assumes that everything can be reduced to a series of well-
defined sequential processes. However, the core assumption of the sequential workflow is
that a process will progress in a predictable manner toward a well-defined conclusion. In
reality, however, this is not always the case.

Consider, for example, the processing of a customer order. A customer places an order
for a particular item. The item is not currently in stock and is ordered from a supplier. At
the time of ordering, the supplier provides an estimated delivery date, and from this date
an expected delivery date for the customer is provided. The supplier ships the goods as
expected, which are ultimately forwarded to the final customer. On the surface, this may
seem like a perfect candidate for a sequential workflow, but what happens if the customer
decides to cancel the order? Or if the supplier can’t deliver the goods? Or if the price of
the goods changes between the time the customer places the order and the order being
fulfilled? Of course, we could create complex sequential workflows to handle these
exceptions, but the point is this: Many exceptions can occur; trying to capture all of them
and define processes for handling all of them in a model intended to represent a core
business process can result in a process that is fraught with minute detail. We’ve moved
from defining what should be done to defining how it should be done.

Chapter 11 Workfl ow 225

P
a

rt
 I

II

The state machine workflow is a far more powerful tool when it comes to mapping
business processes within a software application. It allows us to focus on the key steps while
still allowing flexibility in handling unexpected events. In the processing of a customer
order example, using a state machine approach, we could use four states:

Order Placed• The customer has placed an order.

Order Fulfilled• The items ordered are in stock and have been allocated to the
customer order.

Order Received• The order has been dispatched and the customer has confirmed
receipt.

Order Cancelled• The customer has cancelled the order.

Of course, several other business processes are involved in the transitions between these
four states, but the important difference is that the actual logic of those business processes
does not necessarily need to be well defined. For example, when the customer places an
order, if the ordered item is out of stock, most likely a business process would be in place to
order it from a supplier. However, the details of that process don’t matter to our workflow,
because we’re simply waiting for the state of the order to be updated to Order Fulfilled
after the ordered item becomes available.

As you can see, not all processes are predictable, and sometimes modeling every
eventuality simply muddies the waters and creates a rigidity that defeats the objective of
workflow. State machine workflows allow you to focus on the goal of declaratively defining
business processes while still maintaining operational fidelity.

Making Workflows Work
Let’s move on to consider how workflows are defined and the nuts and bolts of performing
useful functions. As you’ll see in our demonstration scenario, SharePoint allows you to create
workflows in a number of ways. The end result is the same: an eXtensible Application Markup
Language (XAML) file containing an XML representation of the steps to be performed and
the rules governing their execution. Although the file format used by WF is XAML, workflow
files use the extension .xoml, allowing design time tools to differentiate between other uses of
XAML syntax such as Windows Presentation Framework artifacts. Workflow XAML defines
two key elements: workflow rules and workflow activities.

Workflow Rules
Let’s consider an example of a simple workflow that might make use of workflow rules:
An employee completes a purchase requisition form, starting a sequential workflow. The
workflow rules determine that if the amount specified is less than $5000, the requisition
can be approved by any manager within the organization. However, if the amount is greater
than $5000, the requisition must be approved by the purchasing manager.

Since the amount is a significant factor in determining what should be done, it’s
important that it can be changed as part of the workflow definition. To make this possible,
workflows can contain rules and define variables for use by these rules. We’ll see a practical
example of this in our demonstration scenario a bit later in the chapter.

226 PART III Application Services

Workflow Activities
When it comes down to performing actual work, workflows use a series of activities. Each
activity effectively defines a method call, and within the method is code that performs a
particular function. So, for example, if a requisition is sent to the purchasing manager for
approval, a workflow activity creates an e-mail message containing the details of the requisition
and then sends it to the manager for approval. When the manager clicks the approval
button in the e-mail, the workflow activity completes processing and returns the results to
the workflow runtime. The results of workflow activities can be assigned to variables and
can therefore be used by workflow rules.

Out of the box, SharePoint 2010 includes many workflow activities. Confusingly, within
SharePoint, workflow activities are sometimes known as actions, which include the following:

CreateItemActivity• Used to create an item in a SharePoint list.

CreateTask• Used to create a task with specified properties.

EmailActivity• Used to send an e-mail to specified users.

SetStateActivity• Used in state machine workflows to transition between states.

Custom Workflow Activities
Although more than 80 workflow activities are available in SharePoint 2010, when it comes
to building custom applications, you will invariably have to create new activities that are
specific to your problem domain.

Custom workflow activities can be used in exactly the same way built-in workflow
activities are used; although it’s fair to say that a bit more effort is involved in creating a
custom workflow activity than in writing a standard function. Workflow activities have to
satisfy the needs of two distinct audiences. First, workflow activities need to do something
useful at runtime. As developers, we’re completely comfortable with writing the code to
make our custom activity do something useful. In addition to performing some function,
a workflow activity must also provide a useful design-time interface. Business users must
be able to configure our custom activity easily within a workflow design tool if its runtime
functionality is to be used.

Runtime Behavior
From a runtime perspective, creating a custom activity is simply a case of creating a new class
that is derived from System.Workflow.ComponentModel.Activity. Custom code can then be
executed simply by overriding the virtual Execute method from the Activity base class.

Design-time Behavior
As well as the runtime behavior, you need to consider the design-time experience. The WF
framework allows you to define the design time experience in three distinct areas, which
are discussed in the sections that follow.

Adding Validation By adding validation to an activity, you can catch configuration errors
at design time. To implement this functionality, you create a new class that derives from
System.Workflow.ComponentModel.Compiler.Validator. As before, by overriding the virtual
Validate method from the Validator base class, you can add your custom validation code.

Chapter 11 Workfl ow 227

P
a

rt
 I

II

Customizing Toolbox Behavior When you create workflows using Visual Studio, you
can add activities to the design surface by dragging them from the toolbox, as you’re
accustomed to doing with other design-time elements. WF lets you customize the behavior
of your activity when it’s dragged onto the design surface by implementing a custom
ActivityToolboxItem class and attaching it to your activity.

Creating a Custom Designer As well as validating the configuration of our activity using
a validator and automatically setting up default values using a custom toolbox item class, you
can also extend the visual representation of your activity by implementing a custom designer.
In much the same way as other WF objects, a custom designer can be implemented by
deriving a new class from System.Workflow.ComponentModel.Design.ActivityDesigner.

By implementing a custom designer, you can not only alter the visual appearance of an
activity at design time, but you can also implement logic that determines how your activity
behaves on the design surface. For example, you can determine whether child activities can
be added to your activity or how many connection points your activity exposes.

External Activities via Pluggable Workflow Services
A new addition to SharePoint 2010 is the ability to use external activities. Connecting to
external systems has always been available as part of the WF framework. However, creating
a practical implementation required a few additions to the workflow runtime. In MOSS
2007, extending the workflow runtime was not possible, and therefore implementing the
extensions required to support external activities was not possible. Now with SharePoint
2010, communicating with external systems is simply a matter of creating a new class that
inherits from the SPWorkflowExternalDataExchangeService base class.

The addition of external activities to the SharePoint workflow runtime greatly expands
the scope of SharePoint as a workflow host. To pick up on the order fulfillment example
used earlier, if a product is out of stock and requires an order to be placed with a supplier,
it’s now possible for the order to be placed directly from the workflow. Furthermore, any
response from the supplier can also be picked up within the workflow and acted upon
automatically. Bearing in mind the declarative nature of workflow and the aim of easily
allowing business users to model business requirements, this is a very powerful
enhancement to the platform.

Creating Workflows
When it comes to creating workflows for use with SharePoint, you have a choice of a few
methods, each targeted to a particular audience and set of requirements.

Using SharePoint Designer
Creating workflows using SharePoint Designer provides a complete no-code design
experience. As you’ll see in the upcoming demonstration scenario, workflows can be
created by using a series of simple wizard-based steps. In previous versions of SharePoint,
workflows created using SharePoint Designer were not portable—that is, if you wanted to
use the same workflow on more than one list, you had to re-create it again for each list.
With SharePoint 2010, that’s no longer the case; workflows can be easily used across
multiple lists and can also be exported for further enhancement using Visual Studio 2010.

New in

2010

228 PART III Application Services

Using Visio 2010
The ability to use Visio 2010 to create workflows is a new feature in SharePoint 2010. Visio
is undoubtedly the tool of choice when it comes to documenting business processes, and
now, by adopting the Microsoft SharePoint Workflow template, workflows created in Visio
can be imported into SharePoint Designer for implementation. Furthermore, by using
Visio Services, imported workflows can make use of the Visio model to provide a runtime
status indicator.

As well as importing workflows from Visio, you can also export workflows from
SharePoint Designer in a format that can be modified in Visio and then re-imported.

Using Visual Studio 2010
Using SharePoint Designer and Visio 2010 to create workflows is undoubtedly the easiest
way to go for the majority of cases. But what happens when you need a bit more flexibility?
You can use Visual Studio 2010 to take advantage of the entire range of functionality
exposed by the WF framework.

Some features aren’t available outside of Visual Studio, such as the ability to use pluggable
workflow services or the ability to use the CodeActivity which allows developers to execute
arbitrary code easily without having to create a custom activity. Another important feature
that is available only to Visual Studio users is the ability to create state machine workflows.

Demonstration Scenario
There’s a lot to demonstrate when it comes to workflows. Consider this demonstration
scenario:

You’ve been asked to design and build an online ordering system for an electronic
component manufacturer. To comply with international regulations relating to
environmental protection, each product available for order must have achieved
compliance with the appropriate standards for the country into which it will be sold.
Determining compliance involves performing a series of calculations to determine the
level of specific substances within the finished product. Since the calculation is relatively
complex, it will be performed by a separate system. Once the calculation has been
performed, the results should be sent to an environmental control officer for verification.

In addition to the environmental control procedure, products being offered for sale
must also follow a specific publishing process before being included in the site. New
products will be added by the sales department. So that relevant technical information
is available, details of the product will be passed to the engineering department, which
will update the product record with appropriate details. With these details in place,
the marketing department will then be responsible for collating and attaching the
appropriate artwork before the product is sent for final approval by the online sales
manager.

From this scenario, an appropriate design might involve three sequential workflows:

The first workflow will implement the environmental control procedure.•

The second will implement the publishing procedure.•

The third will do the work of physically making the product available for sale once the •
environmental procedure and the publishing procedure have completed successfully.

New in

2010

Chapter 11 Workfl ow 229

P
a

rt
 I

II

TIP All three processes could be implemented using a single workflow. However, in my experience, there’s
only one constant when it comes to business processes and that’s change. In the interests of reuse
and maintainability, three separate workflows are being created, since each addresses a discrete
business process. This means that if the environmental control process changes, for example, only
that workflow needs to be changed regardless of where it’s used across the organization. Had the
process been incorporated into many separate workflows, making changes would be time-consuming
and could lead to inconsistent results. It’s always a good idea to limit the scope of a workflow to a
particular business process when possible.

Prerequisites
Before we can demonstrate workflows in SharePoint 2010, let’s create a sample site
collection to hold the appropriate data.

 1. In SharePoint Designer, choose File | Sites | New Blank Web Site.

 2. Type this location for the new web site: http://localhost/chapter11.

 3. With our new blank web site in place, we can start
defining the data structures that are required by our
application. From the Site Objects pane, select Site
Columns:

 4. From the Columns ribbon, choose New Column |
Currency. In the Create a Site Column dialog that
appears, type the name Unit Price. Choose the New
Group radio button and type the name Online Sales

Columns in the text box. The completed dialog
should look like this:

 5. Now we’ll create a few new columns. Choose New Column | Hyperlink Or Picture
from the Columns ribbon. In the Create a Site Column dialog that appears, type
the name Product Image. Then choose New Column | Yes/No (checkbox) and
type the name Environmental Compliance. Then choose New Column | Multiple
Lines Of Text and type the name Technical Details. Then choose New Column |
Single Line Of Text and type the name Product Name.

230 PART III Application Services

 6. Now we’ll make use of these site columns to define a new Product content type to
hold details of our product catalog. From the Site Objects pane, select Content
Types. From the Content Types ribbon, in the New section, click the Content Type
button to define a new content type. In the Create a Content Type dialog that
appears, type Product in the Name field. In the Select A Parent Content Type
section, from the Select Parent Content Type drop-down, choose List Content
Types. In the Select Parent Content Type drop-down, choose Item. Select the New
Group radio button, and in the text box, enter the name Online Shopping Content

Types. The completed dialog should look as illustrated:

 7. The next step in creating our custom content type is to add the site columns that
we defined earlier. From the Site Objects pane, select Content Types and then
select the Product content type from the content types list. Then, on the Content
Types ribbon, in the Edit section, click Edit Columns.

 8. To attach the site columns that we created earlier, click the Add Existing Site
Column button on the Columns ribbon. Repeat this process to include all the
columns in the Online Sales Columns group that you added in steps 4 and 5.
Once all columns have been added, the completed list should look as follows:

Chapter 11 Workfl ow 231

P
a

rt
 I

II

 9. Click the Save icon in the upper-left corner of the SharePoint Designer window to
commit the changes to the Product content type.

 10. Our next step is to create a list using our custom
content type. The list will be used to store our
product data. From the Site Objects pane, select
Lists and Libraries. From the Lists and Libraries
ribbon, select SharePoint List | Custom List, as
shown:

 11. In the Create List Or Document Library dialog,
enter Products as the name and then click OK to
create the list.

 12. The final step in preparing our demonstration
site is to attach our Product content type to our
Products list. Double-click the Products list to
manage the list settings. In the Settings section,
check the Allow Management Of Content Types
checkbox.

 13. In the Content Types section, click the Add
button, and then select the Product content type
from the list. Highlight the Item content type and
then click Show on New Menu from the ribbon.
Removing the content type from the new menu will prevent content of type Item
from being created using the user interface.

 14. Click the Save icon to commit our changes to the Products list.

Designing a Workflow Using Visio 2010
Visio 2010 includes a new template for creating SharePoint workflows. By using the
Microsoft SharePoint Workflow template, designed workflows can be exported from Visio
into SharePoint Designer for further configuration. Furthermore, regardless of whether a
workflow was created using Visio originally, SharePoint Designer provides the facility to
export the workflow in a format that can be imported into Visio for refinement.

232 PART III Application Services

NOTE It’s not possible to create Visio Workflow Interchange files for Visual Studio generated workflows.
These workflows do not appear in the Workflows list in SharePoint Designer.

Using the Microsoft SharePoint Workflow Template
Our scenario calls for three workflows: an environmental control procedure, a publishing
procedure, and an advert promotion procedure. To demonstrate the creation of workflows
using Visio 2010, we’ll implement the publishing procedure.

To recap the procedure:

New products will be added by the sales department. So that relevant technical
information is available, details of the product will be passed to the engineering
department, which will update the product record with appropriate details. With these
details in place, the marketing department will then be responsible for collating and
attaching the appropriate artwork before the product is sent for final approval by the
online sales manager.

Let’s look at how this can be modeled using Visio:

 1. Open Visio 2010. From the Flowchart template category, select the Microsoft
SharePoint Workflow template. Click Create to create a new document based
on the template.

 2. The first thing we need to add are terminators that denote the start and endpoints
for our workflow. Drag Start and Terminate shapes onto the page, as shown next:

Chapter 11 Workfl ow 233

P
a

rt
 I

II

 3. Our scenario specifies that the engineering department will provide appropriate
technical details for our product record. We want to create a task requesting
further information and assign that task to the engineering department for
completion. To model this, we can use the Collect Data From A User shape. Click
the SharePoint Workflow Actions header, and then drag a Collect Data From A
User shape onto the page. Double-click the shape and type the description Collect

Technical Details from Engineering Department.

 4. The next step in our process is to have the marketing department provide artwork
for our product record. Again we can model this using the Collect Data From A
User shape. This time type the description Collect Product Image from Marketing

Department.

 5. The final step in our process is to assign the completed product record to the
online sales manager for approval. Since we don’t require any content to be added
this time, a more appropriate shape to model this interaction is the Assign Item For
Approval shape in the SharePoint Workflow Actions stencil. Drop the shape on the
page and type the description Assign to Online Sales Manager for Approval.

 6. Now that we have the steps of our workflow laid out, our next step is to connect
them using the standard Visio Connector tool on the Home ribbon in the Tools
section. Use the connector tool to join up the steps of the process. The completed
workflow will look like this:

 7. With our Visio model complete, we can create a Visio Workflow Interchange (.vwi) file
that can be imported into SharePoint Designer. Select the Process ribbon. Before
exporting a workflow, we should check for any errors. Click the Check Diagram button
to validate our model. All being well, a dialog will confirm that “No issues were found
in the current document.” We can then move on to create the interchange file by
clicking the Export button. Name the file by typing PublishingProcedure.vwi.

 8. We’re done with Visio for now. Click the Save icon in the upper-left corner and save
the document as PublishingProcedure.vsd.

Implementing a Visio Workflow Using SharePoint Designer
In the preceding section, you saw how to model a workflow using Visio and create an
interchange file that can be imported into SharePoint Designer. In this section, we’ll move
on to flesh out the logic defined in Visio using the built-in workflow activities available via
SharePoint Designer.

 1. In SharePoint Designer, select Workflows from the Site Objects pane.

 2. In the Workflows ribbon’s Manage section, click the Import From Visio button.

 3. Browse to the PublishingProcedure.vwi file that we created in the preceding
section. Click Next to import the file.

234 PART III Application Services

 4. In the Import Workflow From Visio Drawing dialog, type the Workflow name as
Product Publishing. Two different workflow types are available: List Workflow and
Reusable Workflow. The main difference between these workflows is that the List
Workflow is attached to a particular list and cannot be used by multiple lists,
whereas a reusable workflow can be bound to any number of lists or content types.
List workflows provide comparable functionality to SharePoint Designer workflows
in MOSS 2007. Choose
Reusable Workflow as
the type, and then from
the content types drop-
down, select Product.
The completed dialog
will look like the
following illustration.
Click Finish to
complete the import
process.

 Once our Visio model
has been imported,
SharePoint Designer
will create a new
workflow named
Product Publishing and will automatically open the workflow editor, shown next,
where we can complete the configuration of the workflow.

 5. The logic steps from our Visio model have been automatically inserted into our
SharePoint workflow, and hyperlinked terms in each step allow us to finalize the
configuration. In the Collect Technical Details from Engineering Department step,
click the data hyperlink so that we can define exactly what data should be collected.
In the Custom Task Wizard that appears, click Next to begin creating a new task.

 6. Name the new task Collect Technical Details. Click Next to add fields for the data
in which we’re interested.

 7. Add a field and name it Technical Data. Set the Information Type to Multiple lines
of text. Click Next, accept the default columns settings, and then click Finish to add
the field.

 8. Click Finish to complete the Custom Task Wizard.

Chapter 11 Workfl ow 235

P
a

rt
 I

II

Using Workflow Variables
Now that we’ve created a custom task to capture data, we need a way to retrieve the data
that we’ve captured so that we can do something useful with it. As its name suggests, the
Custom Task Wizard creates a task with a custom form. When a user completes the form,
any data captured is stored in the associated task. The output of this step is an identifier for
the task item that was created. As you’ll see later, we can use this to pick up a reference to
the task and from there access any data that was captured in our custom form.

You’ll remember reading about workflow rules and variables. Since we need to use our
task identifier in another step of our workflow, we must create a variable and assign the
output to it.

 1. To add a new variable, click the Local Variables button from the Workflow ribbon.
Add a new variable named TechnicalDetailsTaskId with a type of List Item Id, as
shown next. Click OK.

 2. To assign the output of our Collect Technical Details task to our new variable, click
the (Output to collect) hyperlink and then select Variable:TechnicalDetailsTaskId.

 3. Use the Custom Task Wizard to add a Collect Product Image from Marketing
Department step. This time, add a field and name it Product Image of type
Hyperlink or Picture and uncheck the Allow Blank Values option in Column settings.
Add a variable named ProductImageTaskId to store the output of the task.

 4. Now that we’ve configured our data capture tasks, the only item remaining is the
approval action. Click the this item hyperlink to select the items that should be the
subject of the approval process. In our case, it should be the Current Item.

 5. With these configuration changes in place, our revised workflow should look like this:

236 PART III Application Services

Using Initiation and Association Forms
You’ll notice that a few properties still need to be configured. These properties contain
details of the users to which each task should be assigned. Generally speaking, properties
such as these, which are likely to change over time, should be user-configurable—that is,
the user should be able to change them without having to edit the underlying workflow.
SharePoint workflows provide two forms for user configuration: the Association form,
which is presented when a workflow is attached to a list, and the Initiation form, which
is presented when a workflow is manually started.

There’s one thing to bear in mind when using the initiation form: it’s not shown if the
workflow is started automatically. So, for example, if we created a workflow that was set to
start every time an item changed, the initiation form would never be shown.

In the case of our workflow, an association form is a more appropriate choice, because
it allows us to define parameters that can be set at the list level.

 1. To define a parameter that appears on an association form, click the Initiation
Form Parameters button in the ribbon. Add a new field named Engineering

Department with an Information type of Person or Group. In the Collect From
Parameter During drop-down, select Association (Attaching To A List). In the
Column Settings dialog, uncheck the Allow Blank Values option and select the All
Users radio button in the Choose From section. Click Finish to add the parameter.

 2. Repeat step 1 and add a Marketing Department parameter and an Online Sales

Manager parameter.

 3. To bind these parameters to our workflow actions, click the this user hyperlink.
Since we’re binding to a parameter rather than an actual user, select Workflow
Lookup for a User. Click Add to configure the parameter binding. In the Lookup
for Person or Group dialog, select Workflow Variable and Parameters as the Data
source. Our association form parameters can now be selected from the Field From
Source drop-down. Select the appropriate parameter and then click OK to complete
the binding.

 4. Repeat step 3 to bind all association form parameters to our workflow actions. The
completed workflow should look as illustrated:

Using the SharePoint Designer Lookup Dialog
Although we’ve configured the actions that were imported from Visio, the end result of our
workflow in its current state won’t be quite as we expected. Although we’re collecting data
from engineering and marketing, we’re not actually attaching that data to our product, it’s

Chapter 11 Workfl ow 237

P
a

rt
 I

II

stored in the custom tasks only. To fix this problem and achieve the desired result, we need
to add a few more actions.

Moving the mouse to the end of the list of workflow steps will show an orange cursor.
Click the cursor to open a text box that can be used to search for the action that we want to
add next. (This cursor appears between each workflow action and before the first action, so
we can add actions wherever we need them.)

 1. Type Set f and then press the enter key to insert a Set Field in Current Item action.
Configure the field as Technical Details and then click the value hyperlink. Click
the fx button to display the Lookup dialog.

 2. You’ll remember that the data entered in our custom task forms is stored in the
task. Using the Lookup dialog, we can extract this data using the ID of the task in
which we’re interested. Set the data source to Tasks. When a workflow is associated
with a list, one of the mandatory parameters is the name of a task list to be used by
the workflow for creating tasks. This task list can be referenced using the Tasks data
source.

 3. In the Field From Source drop-down, select Technical Data. The column contains
the details that a user enters in the custom Collect Technical Details form.

 Since the data source to which we’re binding contains potentially more than one
item, we need to filter it to return only the specific task in which we’re interested.
We created variables to store the output of our custom task actions earlier in this
chapter, and we can use these variables here to pick up references to the
appropriate tasks.

 4. In the Find the List Item section, set the Field to ID and then click the fx button to
show the Lookup dialog. In that dialog, set the Data Source to Workflow Variables
and Parameters and the Field From Source to Variable: TechnicalDetailsTaskId.
Since we intend to use this to look up an item, set the Return Field As to Item Id,
as illustrated:

 5. We’ve added this action at the end of the workflow when really it makes more sense
to attach this data before sending the product record for approval. To move the
action up, highlight it and then click the Move Up button on the Workflow ribbon.

238 PART III Application Services

 6. Add a new Set Field in Current Item action directly underneath the action. Use the
Lookup dialog to attach our Product Image data.

 7. Click Save to commit these configuration changes.

We’ve now completed our first workflow using SharePoint Designer and Visio. The
finished workflow should look as shown:

Using Visio Services to Visualize Workflow State
In addition to the actions that we defined in our original Visio model, we’ve also included a
few new actions to attach the captured data to our product item. We can export our updated
workflow to Visio so that we can update our diagram with appropriate descriptions for these
new actions. Once our model is updated, we can use it to provide status visualization for
our workflow.

 1. In SharePoint Designer, select Workflows from the Site Objects pane. Select the
Product Publishing workflow from the list.

 2. From the Workflows ribbon, click the Export To Visio button. Save the interchange
file as PublishingProcedure.vwi.

 3. Open Visio 2010, and then either open the saved PublishingProcedure.vsd
document that we created earlier or create a new document from the Microsoft
SharePoint Workflow template.

 4. From the Process ribbon, click the Import button. Browse to the
PublishingProcedure.vwi file that we exported in step 2.

 5. The revised workflow will be imported and will update our existing model where
appropriate. Add descriptions for the two Set Field In Current Item actions. The
first should be Store Technical Data and the second should be Store Product Image.

 6. With these changes made, we can tidy up the layout if appropriate and export our
workflow as we did in the preceding section. The completed model should look as
illustrated:

Chapter 11 Workfl ow 239

P
a

rt
 I

II

 7. Switch back to SharePoint Designer to import the changes. Select the Product
Publishing workflow and then click the Import From Visio button in the Workflows
ribbon to import the changes. You’ll notice that, this time, SharePoint Designer
recognizes that the interchange file relates to an existing workflow, and rather
than prompt you for details to create a new workflow, it automatically upgrades
the existing workflow with the changes.

 8. To use our Visio diagram to provide status visualization for our workflow, we need
to check the Show Workflow Visualization On Status Page checkbox in the Settings
section, as illustrated. Click the Save icon in the upper-left corner to save the
changes to the Product Publishing workflow.

 9. Before we can use the workflow, we need to publish it. After you publish the
workflow, SharePoint Designer will automatically generate any required InfoPath
forms. If the workflow being published is already attached to a list or content type,
all new instances of the workflow will use the new published version, while currently
running instances will continue to use the previous version. To publish our Product
Publishing workflow, click the Publish button in the Workflow ribbon.

Associating Reusable Workflows
With our new workflow published, we can now associate it with our Product content type.
You’ll remember that when we created our workflow, we specified that it should target the
Product content type. Even though we specified this targeting, the workflow isn’t bound to
any content type until we specifically bind it. When creating a workflow, the main reason
for setting a content type target is to ensure that the fields of that content type are available
as values within the workflow logic. For example, we specified Product so that we could
make use of the Product Image and Technical Data fields.

 1. To associate our workflow with the Product content type, click the Associate To
Content Type button in the ribbon. You’ll notice that the only option available in
the drop-down list is Product. Since our workflow targets the Product content type,
only content types that are derived from Product or the Product content type itself
are valid selections. Select Product to begin the association process.

 2. The association process is performed using the SharePoint user interface. Since
we want our workflow to start automatically when a new item is created, check the
appropriate start option and then click Next to continue.

 3. SharePoint Designer automatically generates a custom association form based on
the parameters that we specified in our workflow. Since we’re using a blank site,
we don’t have specific user accounts for each of the three departments. We can use

240 PART III Application Services

the built-in Approvers group for the purposes of this demo. Complete the form as
illustrated, and then click Save to complete the association.

To see our new workflow in action, browse to the Products list and add a new item.
Once the item is saved, the Product Publishing workflow automatically starts. By clicking
the In Progress link in the Product Publishing column, we can see more detail on the
workflow progress, including our Visio visualization, as illustrated. We can click the tasks
that are created and enter the appropriate information to complete our workflow. Notice
that the progress is indicated on our Visio visualization.

NOTE You’ll notice that the New Item form contains text boxes for each of the fields in our content type.
Of course, this is perfectly reasonable in most situations, but in our case, we don’t want the Product
Image and Technical Details fields to be populated, because these are completed by the appropriate
department. As described in more detail in Chapter 5, we can easily customize this form to suit our
requirements using InfoPath.

Creating a Pluggable Workflow Service
In this section, we’ll build the environmental control procedure as defined in our
demonstration scenario. Here’s a recap:

To comply with international regulations relating to environmental protection, each
product available for order must have achieved compliance with the appropriate
standards for the country into which it will be sold. Determining compliance involves
performing a series of calculations to determine the level of specific substances within
the finished product. Since the calculation is relatively complex, it will be performed by
a separate system. Once the calculation has been performed, the results should be sent
to an environmental control officer for verification.

Chapter 11 Workfl ow 241

P
a

rt
 I

II

We can see that our workflow should make use of calculation facilities provided by an
external system. Since the calculation process is long running, an asynchronous pattern will
be used—that is, a request will be sent to the external system, the system will acknowledge
the request, and it will then begin performing the relevant work in a separate asynchronous
process. Once the system has completed the prescribed work, it will communicate the
results to the original caller.

Creating a Sample WCF Calculation Service
We’ll implement our demo calculation service using Windows Communication Foundation
(WCF). WCF itself is a separate topic and in-depth coverage is out of scope of this chapter,
but I’ll use it for this example since it is one of the primary mechanisms used for
communicating with external systems.

Since we don’t actually need to perform any calculations, we’ll create a Windows Forms
client application that receives incoming requests and writes them to a list. We’ll then be
able to select requests from the list and manually submit a response to the workflow.

To make this work, we need two WCF services—one in the Windows Forms client to
receive the calculation request, and another within SharePoint to receive the response
from the calculation service. We’ll create the Windows Forms client first.

Create a Windows Forms Client Hosting a WCF Service

 1. In Visual Studio 2010, choose File | New | Project. From the New Project dialog,
select Visual C# | Windows | Windows Forms Application, as shown. Name the
project DemoCalculationEngine.

242 PART III Application Services

 2. Our user interface will be very simple. Add a DataGridView control and a Button.
Anchor them appropriately so that they resize with the form. Set the Text property
of the Button control to Send Result.

 3. With our user interface complete, the next step is to add a WCF service to receive
the calculation requests. To add a new item to the project, press ctrl-shift-a
(alternatively, choose Project | Add New Item). In the Add New Item dialog, select
Visual C# Items | WCF Service. Name the new service class
CalculationRequestService.cs.

 4. Since we’re creating a WCF service, Visual Studio will add two new files to the solution.
The first file, CalculationRequestService.cs, contains the implementation of the
service. The second file, ICalculationRequestService.cs, contains the service contract
definition for the service. We’ll start by defining the contract since we can easily use
Visual Studio to create a default implementation. In the ICalculationRequestService.cs
file, add the following code:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Runtime.Serialization;
using System.ServiceModel;
using System.Text;

namespace DemoCalculationEngine
{

 [ServiceContract]
 public interface ICalculationRequestService
 {
 [OperationContract]
 bool SubmitCalculation(CalculationRequest request);
 }

 [DataContract]
 public class CalculationRequest
 {
 [DataMember(IsRequired = true)]
 public Guid SiteId { get; set; }

 [DataMember(IsRequired = true)]
 public Guid WebId { get; set; }

 [DataMember(IsRequired = true)]
 public Guid InstanceId { get; set; }

Chapter 11 Workfl ow 243

P
a

rt
 I

II

 [DataMember(IsRequired = true)]
 public string ProductName { get; set; }
 }
}

 5. With our service contract and data contract defined, we can move on to focus on
the implementation of the service. In the CalculationRequestService.cs file, add the
following code:

namespace DemoCalculationEngine
{
 public class CalculationRequestService : ICalculationRequestService
 {
 public bool SubmitCalculation(CalculationRequest request)
 {
 Program.theForm.SaveRequest(request);
 return true;
 }
 }
}

TIP To create a default implementation of an interface automatically using Visual Studio, right-click the
name of the interface and then select Implement Interface | Implement Interface from the context
menu.

 Our service implementation probably warrants some explanation. Since we’re going
to write incoming requests to the data grid that we added to our user interface, we
need to do this using the same thread that’s running the user interface to avoid
cross-threading issues. In effect, our service does nothing more than write the
requests to the user interface.

 6. You may notice that the code in our SubmitCalculation method contains a “Form
has not yet been defined” error. To fix this, add the following code to Program.cs:

using System;
using System.ServiceModel;
using System.Windows.Forms;

namespace DemoCalculationEngine
{
 static class Program
 {
 public static Form1 theForm;

 [STAThread]
 static void Main()

244 PART III Application Services

 {
 using (ServiceHost host = newServiceHost
 (typeof(CalculationRequestService)))
 {
 host.Open();
 Application.EnableVisualStyles();
 Application.SetCompatibleTextRenderingDefault(false);
 theForm = new Form1();
 Application.Run(theForm);
 }
 }
 }
}

 7. As is too often the case, with that error fixed, you’ll notice that we now have a
different problem. SaveRequest is not defined on Form1. So add the following
code to form1.cs to complete our implementation:

using System.ComponentModel;
using System.Windows.Forms;

namespace DemoCalculationEngine
{
 public partial class Form1 : Form
 {
 private delegate void SaveRequestMethod(CalculationRequest request);
 private BindingList<CalculationRequest> _calculationList;

 public Form1()
 {
 InitializeComponent();
 _calculationList = new BindingList<CalculationRequest>();
 dataGridView1.DataSource = _calculationList;
 dataGridView1.SelectionMode = DataGridViewSelectionMode.FullRowSelect;
 dataGridView1.MultiSelect = false;
 dataGridView1.AllowUserToAddRows = false;
 }

 internal void SaveRequest(CalculationRequest request)
 {
 if (this.InvokeRequired)
 {
 SaveRequestMethod theDelegate = new SaveRequestMethod(this.SaveRequest);
 this.Invoke(theDelegate, new object[] { request });
 }

Chapter 11 Workfl ow 245

P
a

rt
 I

II

 else
 {
 _calculationList.Add(request);
 }
 }
 }
}

We can make use of the WCF test tools that are provided with Visual Studio to check
that everything is working properly. Open up a Visual Studio command prompt and type
the following:

C:\Program Files (x86)\Microsoft Visual Studio 10.0\VC>WCFTestClient

This will start the WCFTestClient.exe application that we can use to submit requests to our
calculation engine.

Before we can connect, we need to know the endpoint URI for our service. This can be
found in the app.config file for our client application under system.serviceModel | Services |
service | host | baseAddress. The URI will be similar to this: http://localhost:8732/Design_
Time_Addresses/DemoCalculationEngine/CalculationRequestService/. Now, if we run the
client application, we can choose File | Add Service in the WCFTestClient tool to generate
a proxy that will allow us to send a test request. If all is well, we’ll see the requests being
queued in our client app, as shown next:

246 PART III Application Services

Add a SharePoint-Hosted WCF Service
Now that our client WCF service is up and running, our next logical step is to implement a
WCF service that can be hosted within SharePoint to receive calculation results from our
client application.

 1. We’ll make use of the packaging and deployment capabilities of Visual Studio to set
up our WCF service on SharePoint. In Visual Studio, choose File | New | Project and
then from the New Project dialog, choose SharePoint | 2010 | Empty SharePoint
Project. Name the new project WorkflowDemonstration as illustrated.

 2. Set the local site to use for debugging to the demonstration site that we created
earlier: http://localhost/chapter11. We need to deploy as a farm solution since
the components that we’re about to add are not supported in a sandbox.

 3. At the time of writing, no SharePoint specific template item is available for
deploying a WCF service, so we have to set up the solution file manually. The first
thing we need to do is to add a new WCF Service item. Press ctrl-shift-a to show
the Add New Item dialog. Select Visual C# | WCF Service. Name the new class
CalculationResultService.cs.

 4. As before, Visual Studio will add two new files to our solution together with the
appropriate references required to support WCF. Again, we’ll start off by defining
our service contract. In the ICalculationResultService.cs file, enter the following:

Chapter 11 Workfl ow 247

P
a

rt
 I

II

using System;
using System.Runtime.Serialization;
using System.ServiceModel;

namespace WorkflowDemonstration
{
 [ServiceContract]
 public interface ICalculationResultService
 {
 [OperationContract]
 bool ProcessCalculationResult(CalculationResult result);
 }

 [DataContract]
 public class CalculationResult
 {
 [DataMember(IsRequired = true)]
 public string Result { get; set; }
 [DataMember(IsRequired = true)]
 public Guid SiteId { get; set; }
 [DataMember(IsRequired = true)]
 public Guid WebId { get; set; }
 [DataMember(IsRequired = true)]
 public Guid InstanceId { get; set; }
 }
}

 5. Since our service will ultimately send events to workflows hosted on the SharePoint
workflow runtime, we have a few things to do before we can fully implement the
required functionality. For now, we’ll create a stub method based on our interface.
In the CalculationResultService.cs file, enter the following:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Runtime.Serialization;

using System.ServiceModel;

using System.Text;

namespace WorkflowDemonstration

{

 [AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirements-

Mode.Allowed)]

 public class CalculationResultService : ICalculationResultService

 {

 public bool ProcessCalculationResult(CalculationResult result)

248 PART III Application Services

 {

 return true;

 }

 }

}

Hosting an .svc File in SharePoint To make our service available for our client
application, we need to host it somewhere. Since SharePoint runs on Internet Information
Server (IIS), we need to create a .svc file with details of our service implementation. Of
course, before we create the file, we need somewhere to put it; for the purposes of this
demonstration, we’ll use a custom subfolder within the %SPROOT%\TEMPLATE\Layouts
folder. We can set up this folder automatically using our Visual Studio project.

 1. Choose Project | Add SharePoint “Layouts” Mapped Folder. You’ll notice that a new
Layouts folder is added to the solution:

 2. We can now go ahead and add our CalculationResultService.svc file. In
the Layouts\WorkflowDemonstration folder, add a new XML file named
CalculationResultService.svc. Replace the contents of the file with the following:

<%@ Assembly Name="$SharePoint.Project.AssemblyFullName$"%>
<% @ServiceHost Service="WorkflowDemonstration.CalculationResultService" %>

Token Replacement in Visual Studio Visual Studio 2010 allows the use of replaceable
tokens when creating SharePoint solution packages. Our code sample makes use of the
token $SharePoint.Project.AssemblyFullName$ that will be replaced when the package
is built, by the four-part assembly name for the associated assembly. However, at the
time of writing, no WCF template is available for SharePoint. Therefore, tokens are
not automatically replaced in files with an .svc extension.

Chapter 11 Workfl ow 249

P
a

rt
 I

II

Thankfully, this is a simple problem to resolve. Navigate to C:\Program Files
(x86)\MSBuild\Microsoft\VisualStudio\v10.0\SharePointTools and then open the
Microsoft.VisualStudio.SharePoint.targets file. This is an XML format file that
defines various configuration settings for building SharePoint projects. Find the
TokenReplacementFileExtensions element and append svc to the list of file extensions
as shown:

<TokenReplacementFileExtensions>$(TokenReplacementFileExtensions);xml;aspx;ascx;
webpart;dwp;svc </TokenReplacementFileExtensions>

Adding WCF Service Configuration to SharePoint As well as an .svc file, IIS also needs
to read the configuration of the WCF service from the web.config file. For the purposes of
our demonstration, we’ll make the necessary changes manually.

 1. Open the web.config file for our application (at C:\inetpub\wwwroot\wss\
VirtualDirectories\80\web.config if the application is the first application running
on port 80). In the system.serviceModel element, add the following configuration
details:

<serviceHostingEnvironment aspNetCompatibilityEnabled="true" />
<bindings>
 <basicHttpBinding>
 <binding name="WfDemoBinding">
 <security mode="TransportCredentialOnly">
 <transport clientCredentialType="Ntlm" />
 </security>
 </binding>
 </basicHttpBinding>
</bindings>
<behaviors>
 <serviceBehaviors>
 <behavior name="WfDemoBehavior">
 <serviceMetadata httpGetEnabled="true" />
 <serviceDebug includeExceptionDetailInFaults="false" />
 </behavior>
 </serviceBehaviors>
</behaviors>
<services>
 <service behaviorConfiguration="WfDemoBehavior"
 name="WorkflowDemonstration.CalculationResultService">
 <endpoint address="" binding="basicHttpBinding"
 bindingConfiguration="WfDemoBinding"
 contract="WorkflowDemonstration.ICalculationResultService">
 <identity>
 <dns value="localhost" />
 </identity>
 </endpoint>

250 PART III Application Services

 <host>
 <baseAddresses>
 <add baseAddress="http://localhost/_layouts/WorkflowDemonstration" />
 </baseAddresses>
 </host>
 </service>
</services>

We’re now ready to deploy the service to SharePoint. From the Build menu select
Deploy WorkflowDemonstration. Visual Studio will now build the solution, create a WSP
package, and then deploy the package to our SharePoint server.

As we did for our client application, we can now make use of WCFTestClient to send
a test call to our WCF service. This time the endpoint address will be http://localhost/_
layouts/WorkflowDemonstration/CalculationResultService.svc. If all is well, our service will
return True when invoked as per our stub implementation.

Creating a Pluggable Workflow Service
Having set up the communications mechanism between the calculation engine and
SharePoint, our next step is to create a pluggable workflow service that can be hooked up
to our SharePoint service to broker requests between the WCF service and SharePoint’s
workflow engine. Before we get into the code, I’ll show you how pluggable workflow
services work.

As mentioned, pluggable workflow services can be created by inheriting from
SPWorkflowExternalDataExchangeService. External data exchange services, also known
as local services, are a key component of the WF framework. Without local services, a
workflow runtime has no means of communicating with the external environment, and in
fact SharePoint defines two local services that allow the workflow runtime to communicate
with the SharePoint platform itself: SPWinOEWSSService and SPWinOETaskService. For
the most part, the SharePoint workflow activities that are available out of the box make use
of these services for communication.

Generally speaking, WF can be configured using a configuration file. The configuration
can specify which services should be available to the runtime and how certain functions are
performed. Since allowing changes to the configuration at this level could cause major
support issues, Microsoft chose to disallow workflow configuration in SharePoint via the
normal channels. In previous versions of SharePoint, this meant that no additional local
services could be added. However, with SharePoint 2010, an additional configuration handler
has been implemented that allows objects of type SPWorkflowExternalDataExchangeService
to be added to the workflow runtime.

External data exchange services are created in a similar fashion to WCF services. An
interface is defined that determines the methods and events that should be available to
the workflow runtime. Once the interface is completed, a local service class based on
SPWorkflowExternalDataExchangeService and implementing the interface is created.
Finally, the local service class is added to the configuration for the workflow runtime.

Using the ExternalDataExchange Attribute
Now that you understand how pluggable services work, let’s move on to our implementation.

Chapter 11 Workfl ow 251

P
a

rt
 I

II

We first add an interface for our service. Add a new interface file to the
WorkflowDemonstration solution named IExternalCalculationService.cs. Add
the following code:

using System;
using System.Workflow.Activities;

namespace WorkflowDemonstration
{
 [ExternalDataExchange]
 public interface IExternalCalculationService
 {
 event EventHandler<CalculationResultArgs> CalculationComplete;
 void SubmitCalculation(string product);
 }

 [Serializable]
 public class CalculationResultArgs : ExternalDataEventArgs
 {
 public CalculationResultArgs(Guid id) : base(id) { }
 public string Result;
 }
}

NOTE Creating workflow services requires references to System.Workflow.Activities and System.Workflow
.Runtime.

Notice a few things about this code sample. Firstly, the ExternalDataExchange attribute
is used to let the workflow runtime know that the interface should be accessible to workflow
activities. We’ll build up a workflow later to see this in action. Secondly, any events that are
raised must be derived from the ExternalDataEventArgs class and must be serializable. The
ExternalDataEventArgs class defines the base parameters that are required to route the
event to the correct workflow instance. Because the workflow will most likely be running
in a different application domain, events must be serializable in order to be passed to the
runtime.

Deriving from SPWorkflowExternalDataExchangeService
With the interface in place, we can move on to creating an implementation of the service.

Add a new class named CalculationWorkflowService and then add the following code
to the CalculationWorkflowService.cs file:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Workflow.Activities;

252 PART III Application Services

using System.ServiceModel.Activation;

using Microsoft.SharePoint.Workflow;

using System.Workflow.Runtime;

namespace WorkflowDemonstration

{

 [AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirements-

Mode.Allowed)]

 class CalculationWorkflowService: SPWorkflowExternalDataExchangeService, IExternal-

CalculationService

 {

 public event EventHandler<CalculationResultArgs> CalculationComplete;

 public void SubmitCalculation(string product)

 {

 //Call WCF Service

 }

 public override void CallEventHandler(Type eventType,

 string eventName,

 object[] eventData,

 SPWorkflow workflow,

 string identity,

 IPendingWork workHandler,

 object workItem)

 {

 //raise event

 }

 public override void CreateSubscription(MessageEventSubscription subscription)

 {

 throw new NotImplementedException();

 }

 public override void DeleteSubscription(Guid subscriptionId)

 {

 throw new NotImplementedException();

 }

 }

 }

The main thing worth mentioning with regard to this code sample is
the override of CallEventHandler. CallEventHandler is defined on the
SPWorkflowExternalDataExchangeService base class and is used to relay events
back to the workflow runtime with sufficient information to recover the relevant
SharePoint context. CreateSubscription and DeleteSubscription are marked as
MustInherit in the base class but are not required by our service and therefore have
default implementations.

Chapter 11 Workfl ow 253

P
a

rt
 I

II

Calling a WCF Service
The next step is to flesh out the implementation of the SubmitCalculation method. Since
this is where we’ll make a call out to our external calculation service, we need to add a
service reference to generate the appropriate proxy.

 1. So that our service endpoint is available, start up the DemoCalculationEngine
application that we created earlier.

 2. In the WorkflowDemonstration solution, select Project | Add Service Reference.
Add the address of the client WCF service and then click Go to retrieve the service
metadata. Set the Namespace to CalculationEngine as illustrated.

When a service reference is added to a project, Visual Studio automatically stores the
binding and endpoint configuration in either app.config or web.config, depending on the
type of project. In our case, the configuration has been added to app.config even though
this file is not utilized by the SharePoint deployment mechanism.

Since SharePoint runs on IIS, any configuration information has to be included in the
appropriate web.config file. However, when it comes to workflow, storing information in
web.config doesn’t work as expected. Depending on the state of the workflow, it will be
running either within IIS or within a separate server process. The problem here is that
configuration information that will be available when running under IIS will not be
available when running under the server process.

To avoid problems locating configuration data, it’s generally good practice to capture
such information as part of the workflow association process. For the purposes of our
demonstration, we’ll hard code the configuration information for now.

In the SubmitCalculation method, add the following code:

 public void SubmitCalculation(string product)
 {

254 PART III Application Services

 //Call WCF Service
 CalculationEngine.CalculationRequest request = new
 CalculationEngine.CalculationRequest();
 WSHttpBinding binding = new WSHttpBinding();

 EndpointAddress address = new EndpointAddress("ClientServiceURI");

 //So that we can pick up the correct workflow
 //we need WorkflowInstanceId & a reference to web
 CalculationEngine.CalculationRequestServiceClient client = new
 CalculationEngine.CalculationRequestServiceClient(binding,address);
 request.ProductName = product;

 request.InstanceId = this.CurrentWorkflow.InstanceId;
 request.SiteId = this.CurrentWorkflow.SiteId;
 request.WebId = this.CurrentWorkflow.WebId;

 client.SubmitCalculation(request);
 }

One important thing to note about this code is the EndpointAddress. This should be
the URI for the DemoCalculationEngine WCF service to which we added a reference.

Receiving WCF Messages
The next piece of functionality that we need to consider is raising the CalculationComplete
event. This event will let our workflow know that the external calculation process has
completed as well as provide the result of the calculation.

You’ll remember that when we added the SharePoint WCF service, we added a basic
stub implementation for the ProcessCalculationResult method. We can now go back and
revisit this since a call to this method ultimately signals that the calculation process has
completed.

Rather than have two separate objects, one for handling the ProcessCalculationResult
message and another for passing that message onto the workflow, we can perform both
tasks in a single method on the CalculationWorkflowService.

 1. Add the following code to CalculationWorkflowService.cs:

 public bool ProcessCalculationResult(CalculationResult result)
 {
 using (SPSite site = new SPSite(result.SiteId))
 {
 using (SPWeb web = site.OpenWeb(result.WebId))
 {
 RaiseEvent(web,

Chapter 11 Workfl ow 255

P
a

rt
 I

II

 result.InstanceId,
 typeof(IExternalCalculationService),
 "CalculationComplete",
 new object[] { result.Result });

 return true;
 }
 }
 }

 2. So that we can direct WCF calls for ProcessCalculationResult to this method, we
need to make a few additional changes. First, delete the CalculationResultService.cs file
containing our stub method. Then add ICalculationResult to the list of implemented
interfaces on CalculationWebService, like so:

class CalculationWorkflowService:SPWorkflowExternalDataExchangeService,
IExternalCalculationService, ICalculationResultService

 3. Since we’ll no longer be using the CalculationResultService class to handle method
calls for our WCF service, we need to modify the service configuration in web.
config. Within the system.serviceModel element, change the service element
named WorkflowDemonstration.CalculationResultService to
WorkflowDemonstration.CalculationWorkflowService as shown:

<services>
<service behaviorConfiguration="WfDemoBehavior"
name="WorkflowDemonstration.CalculationWorkflowService">

 4. The final change we need to make is to the ServiceHost entry in the
CalculationResultService.svc file. Change this to WorkflowDemonstration

.CalculationWorkflowService as shown:

<%@ Assembly Name="$SharePoint.Project.AssemblyFullName$"%>
<% @ServiceHost Service="WorkflowDemonstration.CalculationWorkflowService" %>

Raising Events in a Workflow Service We can see that the ProcessCalculationResult
makes use of the parameters received to create a reference to an SPWeb object. It then
passes this reference together with a workflow instance identifier to the RaiseEvent method.
As its name suggests, RaiseEvent is responsible for raising an event within the appropriate
workflow instance. Before the event is queued for the appropriate workflow instance, the
CallEventHandler method is called to populate an appropriate ExternalDataEventArgs-
derived object.

Add the following code to the CallEventHandler override to populate our
CalculationResultArgs structure before the event is passed to the workflow:

public override void CallEventHandler(Type eventType,
 string eventName,
 object[] eventData,

256 PART III Application Services

 SPWorkflow workflow,
 string identity,
 IPendingWork workHandler,
 object workItem)
{
 CalculationResultArgs args = new CalculationResultArgs(workflow
.InstanceId);

 args.Result = eventData[0].ToString();
 args.WorkHandler = workHandler;
 args.WorkItem = workItem;
 args.Identity = identity;
 this.CalculationComplete(null, args);
}

Configuring Pluggable Workflow Services
You’ll remember that SharePoint 2010 introduces a new configuration handler for pluggable
workflow services. The final step that we need to take to enable our service is to add a
configuration entry in web.config.

In web.config, navigate to the configuration | SharePoint | WorkflowServices section
and then insert the following element:

<WorkflowService Assembly="WorkflowDemonstration, Version=1.0.0.0,
Culture=neutral, PublicKeyToken=YourPublicKey"
Class="WorkflowDemonstration.CalculationWorkflowService">
 </WorkflowService>

Unfortunately, on this occasion, we don’t have the luxury of Visual Studio token
replacement so we have to find the PublicKeyToken by examining the properties of the
WorkflowDemonstration assembly within the Global Assembly Cache (GAC). With this
done, we can deploy the project to SharePoint.

We’ve now completed the implementation of our pluggable workflow service as well as
our SharePoint-hosted WCF service. Although we could test the service using WCFTestClient,
we’ll receive errors since no genuine workflow instances are awaiting a calculation response.

Calling a SharePoint-Hosted WCF Service
To complete our calculation engine implementation, we need to add some code to our
DemoCalculationEngine project. We need a method that can make a call into our SharePoint
WCF service to notify the workflow that calculation is complete. With the SharePoint project
deployed, we first need to add a service reference to the SharePoint WCF service.

 1. In the DemoCalculationEngine project, choose Project | Add Service Reference.
Set the Address to http://localhost/_layouts/WorkflowDemonstration/

CalculationResultService.svc.

 2. Since the service is hosted within SharePoint, requests must be authenticated; as a
result, we need to enter credentials for a user account with permissions to connect
to the SharePoint site.

Chapter 11 Workfl ow 257

P
a

rt
 I

II

 3. Once the service metadata has been retrieved, set the Namespace to
CalculationResultService and the click OK to complete the process.

NOTE When adding a service reference for a SharePoint, you’ll sometimes see multiple prompts to enter
credentials. Usually, after entering valid credentials once, clicking Cancel on subsequent prompts will
allow the process to continue.

 4. With our service reference in place, we can move on to add the following code to
handle the button click event in Form1.cs:

private void button1_Click(object sender, System.EventArgs e)
 {
 foreach (DataGridViewRow row in dataGridView1.SelectedRows)
 {
 CalculationResultService.CalculationResultServiceClient client = new
 CalculationResultService.CalculationResultServiceClient();
 client.ClientCredentials.Windows.AllowedImpersonationLevel =
 System.Security.Principal.TokenImpersonationLevel.Impersonation;
 CalculationResultService.CalculationResult result = new
 CalculationResultService.CalculationResult();

 CalculationRequest selected = row.DataBoundItem as CalculationRequest;

 result.Result = selected.ProductName + " Complete";
 result.InstanceId = selected.InstanceId;
 result.SiteId = selected.SiteId;
 result.WebId = selected.WebId;

 if (client.ProcessCalculationResult(result))
 {
 row.Selected = false;
 _calculationList.Remove(selected);
 }
 }
 }

We can now manually trigger calculation results by selecting an item from the data grid
and then clicking the Send Result button.

TIP When hosting WCF services in SharePoint, it’s important that the client proxy allows impersonation;
otherwise, some weird and wonderful COM errors may be thrown by SharePoint. To allow impersonation,
set the AllowedImpersonationLevel to Impersonation, as shown in the preceding code sample.

Creating a Workflow Using Visual Studio 2010
With our pluggable workflow service and external calculation engine up and running,
we can create a basic workflow in Visual Studio that will send messages to the calculation
engine. Our test workflow will be very simple; when a new item is added to a list, its title will

258 PART III Application Services

be sent to the calculation engine. We will then be able to trigger a response manually from
the calculation engine, which will be passed to the workflow. The workflow will log the
response and complete.

 1. We can add our workflow to the WorkflowDemonstration solution that we created
earlier. In Visual Studio, select Project | Add New Item. From the Add New Item
dialog, select SharePoint | 2010 | Sequential Workflow. Name the new workflow
External Calculation, as shown:

 2. In the SharePoint Customization Wizard dialog, leave the default name as
WorkflowDemonstration - External Calculation. We can see that the same types
of workflow that are available in SharePoint Designer are also available for Visual
Studio workflows: List Workflow and Site Workflow. Since we’re planning to use
data in a list to trigger our workflow, set the type to List Workflow.

 3. Accept the default association settings. This will associate our workflow with the
Products list that we created earlier. Click Finish to complete the process.

Using the Visual Studio Workflow Designer
When the workflow has been added to the project, the workflow designer tool will be
displayed. You can see that its user interface is similar to the one we created earlier using
Visio 2010. You can drag workflow activities from the toolbox on to the design surface to
build up the workflow logic.

Chapter 11 Workfl ow 259

P
a

rt
 I

II

Our workflow needs five additional steps: CallExternalMethod,
which can be found in the Windows Workflow v3.0 group in the
toolbox; SetState, which can be found in the SharePoint Workflow
group; HandleExternalEvent, which can be found in the Windows
Workflow v3.0 group; LogToHistoryListActivity, which can be found in
the SharePoint Workflow group; and CodeActivity, which can be found
in the Windows Workflow v3.0 group.

Drag the required activities onto the designer surface, as
illustrated:

Configuring Workflow Activities
You can see from the designer that a few of our activities have not
been configured properly. This is indicated by the icon in the upper-
right corner of the activity control. Let’s work through them in
sequence to set the appropriate configuration details.

CallExternalMethodActivity Starting with callExternalMethodActivity1,
when we select the activity we can see in the Properties pane that the
values for InterfaceType and MethodName are invalid as shown. This
activity is used to communicate with a pluggable workflow service and
in our case will be used to invoke the SubmitCalculation method on
our CalculationWorkflowService.

 1. The first property to configure is InterfaceType. This is the interface that we tagged
earlier with the ExternalDataExchange attribute. Click the ellipsis to show the
Browse and Select a .NET Type dialog.
The IExternalCalculationService is already
selected since it’s the only interface in our
solution with the appropriate attribute.
Click OK to use this.

 2. Now the MethodName property needs to
be configured. From the drop-down list,
select SubmitCalculation. The values in the
drop-down list are populated from the
InterfaceType by using reflection. Since
SubmitCalculation is the only method on our interface, it is the only item in the list.

 3. Once SubmitCalculation has been selected, a new property appears: product. The
property is added automatically since it appears in the list of arguments for the
SubmitCalculation method. For out test workflow, we’ll set this to the title of the
list items on which the workflow has been started. Click the ellipsis to show the
Bind dialog, an important part of the workflow designer because it allows us to
bind properties to local variables or other properties. We can add new variables by
selecting the Bind To A New Member tab if required. For our purposes, we need
to bind the product property to the Title property of the current workflow item.
Expand workflowProperties | Item | Title, and then click OK to store the binding.

260 PART III Application Services

SetStateActivity and CorrelationTokens Moving onto the setState1 activity, we can see
that the CorrelationToken property is invalid. CorrelationTokens are an important aspect
of WF workflows and are used to determine the scope of the activity. A CorrelationToken
is simply a text value that is used to group activities and, more importantly, the properties
that they use. If a workflow has a property named foo, for example, when a workflow activity
with a correlation token of token A writes to the foo property, other workflow actions
with a correlation token of token A will be able to read the value. However, if a workflow
action with a correlation token of token B writes to the property, the actions with a token
of token A will still see the original value, whereas actions with token B will see the new
value. In effect, every property is actually an array with the correlation token being used as
an indexer. When it comes to SharePoint workflows, this is particularly relevant when using
Task activities.

Set the CorrelationToken for setState1 to workflowToken with an OwnerActivityName
of External_Calculation.

Adding Custom Status Values to SharePoint Although the configuration of the setState
activity is now valid, it doesn’t quite do what we want it to. When a workflow is added to a
list item in SharePoint, a new column is added to the appropriate list that shows the current
state of the workflow. The setState activity allows us to specify the value that should appear
in this list. In our case, we want to show the text Awaiting Calculation Result.

Before we can display a custom value for workflow status, we need to let SharePoint
know what our new value is. Workflow states are stored in SharePoint in a similar format to
lookup values, so each state needs an ID and a text value. To add new states, we need only
the text value, since SharePoint will automatically generate a new ID.

We can add the text for the new state in the Elements.xml file that exists under our External
Calculation workflow in the Solution Explorer pane. Add an ExtendedStatusColumnValues
element to the MetaData element, as shown:

<MetaData>
 <AssociationCategories>List</AssociationCategories>
<StatusPageUrl>_layouts/WrkStat.aspx</StatusPageUrl>

 <ExtendedStatusColumnValues>
 <StatusColumnValue>Awaiting Calculation Result</StatusColumnValue>
 </ExtendedStatusColumnValues>
</MetaData>

With the text value for our new status added, we can now configure our setState activity
to use it. Unfortunately, it’s not quite as simple as that though. SetState expects the ID of
our new state, and since this will be generated by SharePoint when our workflow is installed,
we don’t currently have a reference to the ID value. We can calculate the ID for our new
state simply by adding one to the ID of the last state that SharePoint defines internally.

 1. Right-click the workflow designer and then select View Code to see the code
behind for our workflow. Add the following field:

public int AwaitingCalculationState = ((int) SPWorkflowStatus.Max);

Chapter 11 Workfl ow 261

P
a

rt
 I

II

 SPWorkflowStatus is an enumeration of the workflow states that SharePoint
provides by default. Our new extended status column value will be assigned the
next ID in the sequence, which we can retrieve using the SPWorkflowStatus.Max
value. If we wanted to add more than one additional state, we could use
SPWorkflowStatus.Max +1, SPWorkflowStatus.Max+2, and so on, to determine
the IDs for subsequent states.

 2. We can now bind the State property of our SetState activity to our new
AwaitingCalculationState field.

HandleExternalActivity The next activity to configure is handleExternalEventActivity1.
This activity listens for an event from a pluggable workflow service. It’s configured in much
the same way as callExternalMethodActivity1.

 1. Set the InterfaceType to IExternalCalculationService, and then select
CalculationComplete from the EventName drop-down.

 2. Since this is an event, we don’t need to specify any parameters. Although, since
we’re interested in the CalculationResultArgs parameter that is passed with the
event, we can bind this value to a local variable using the e property. Click the
ellipsis to show the Bind dialog. This time, select the Bind To New Member tab
and then add a new property with the name CalculationCompleteArgs, as shown.
This binding will store the values passed with the event in a local variable called
CalculationCompleteArgs that we’ll be able to use in subsequent workflow activities.

LogToHistoryListActivity We’ve now configured all the mandatory properties
for our workflow. Before we deploy, we need to make one additional change. The
logToHistoryListActivity1 action is not set up to log anything useful to the workflow

262 PART III Application Services

history list. Since we want it to pick up the calculation result, we need to set a few
properties.

 1. For HistoryOutcome, type Calculation Result.

 2. Using the Bind dialog, bind the HistoryDescription property to
CalculationCompleteArgs.Result, as shown:

CodeActivity The CodeActivity can be used to execute arbitrary code within the
workflow engine. Our workflow requires that, as a result of the external calculation
process, the Environmental Compliance flag is set to true or false. For the purposes of our
demonstration, we’ll assume that our organization manufactures only environmentally
friendly products and that the result of the calculation always indicates compliance.

 1. To configure the CodeActivity for the ExecuteCode property, enter UpdateFlag.

 2. Press enter, and the designer switches to code-behind view and a new method is
automatically created for UpdateFlag. Add the following code:

 private void UpdateFlag(object sender, EventArgs e)
 {
 workflowProperties.Item[“Environmental Compliance"] = true;
 workflowProperties.Item.Update();
 }

We’ve now completed our test workflow. When deploying the solution to SharePoint,
our workflow will automatically be attached to the Product list at http://localhost/chapter11.
With our DemoCalculationEngine project running, we can add new items to the Product
list and see the messages being passed to our calculation engine as expected. Viewing the
workflow history will also show that the status value is being updated as expected and the
calculation result is being written to history before the workflow completes.

Creating a Workflow Using SharePoint Designer
In the preceding sections, we’ve implemented two of the three workflows that are required
for our demonstration scenario. The final workflow simply waits for the other two workflows
to complete successfully before allowing the product to be advertised.

We’ve covered creating workflows using Visio 2010 with SharePoint Designer and Visual
Studio 2010. For this simple workflow, we’ll make use of SharePoint Designer on its own
and then export the workflow to Visual Studio to add some custom code.

Chapter 11 Workfl ow 263

P
a

rt
 I

II

 1. In SharePoint Designer, select Workflows from the Site Objects pane.

 2. From the Workflows ribbon, select Reusable Workflow.

 3. Name the new workflow Product Advertising and limit the workflow to the Product
content type.

 4. Add three Wait for Field Change in Current Item actions to the workflow.
Configure them as illustrated:

 5. Since these activities can be completed in parallel, we can add them to a parallel
block. From the Workflow ribbon, in the Insert section, select Parallel Block.

 6. Using the Move Up and Move Down buttons in the Workflow ribbon, move the
three actions into the Parallel Block.

 7. Set the status to Available for Advertising. Add a Set Workflow Status action after
the Parallel Block.

 8. In the status combo box, type Available for Advertising, as illustrated:

 9. Publish the workflow using the Publish button in the Save section of the Workflow
ribbon.

 10. To attach the workflow to the Product content type, select Workflow Settings from
the Workflow ribbon. This will close the workflow editor and display the Workflow
Settings page instead.

 11. From the Workflow Settings ribbon, select Associate to Content Type | Product.

 12. On the Add a Workflow page, set the Start Options to Start This Workflow When A
New Item Is Created. Click OK to complete the process.

We can now create a new product and, using the workflows that we’ve implemented,
complete the process defined in our demonstration scenario. When a new item is added to
the Products list, our workflows are started automatically. The Product Publishing workflow

264 PART III Application Services

creates tasks for the capture of additional information, while the Environmental Compliance
workflow submits a calculation request to our sample calculation engine. When both of
these workflows are complete, the Product Advertising workflow completes with a status
of Available for Advertising.

Summary
We’ve covered a lot of ground in this chapter. Windows Workflow Foundation is more than
a feature of SharePoint; it’s an alternative way of developing software. One of the things
you’ll have noticed as we worked through this chapter was that we spent absolutely no time
on workflow “plumbing.” We didn’t worry about how the workflow state was persisted or
how the events that we raised got routed to the correct workflow instance. The workflow
runtime that’s hosted within SharePoint took care of all this stuff for us. Using SharePoint
2010 as a platform, building workflow-enabled applications is now easier than ever before.

12
CHAPTER

265

Excel Services

SharePoint started life as a collaboration tool that allowed teams to create basic web sites
and use them for sharing documents. Building on this idea, the good folks at Microsoft
added some integration between Microsoft Office applications and SharePoint, allowing
documents to be opened and edited from a SharePoint site in the same way as a network
file share. Given that the aim of the game was to make collaboration easier, this worked
very well. Users had a central location for all documents relating to a particular project
and could seamlessly access them.

There was a drawback, however: This system was great for static documents, such as
Microsoft Word docs, that can easily be displayed on a web site without losing any of their
original functionality. But what about interactive documents such as Microsoft Excel? A
spreadsheet’s purpose is to allow users to perform calculations and analyze the results; doing
this effectively requires some interactivity. A static spreadsheet is no more useful than a list
of numbers in a Word document. Realizing this, the SharePoint team at Microsoft introduced
Excel Services in MOSS 2007. In effect, Excel services provide the calculation and display
engine of Microsoft Excel as a server-side component. It allows documents created using
the Excel client application to be stored on a SharePoint site and used via a web browser,
all without the need to install the Excel client application.

SharePoint 2010 extends this concept. Although the inclusion of Excel data and
visualizations within SharePoint pages was possible with MOSS 2007, using SharePoint
2010, a new REST API makes this easier than ever before. Furthermore, the addition of a
JavaScript object model means that the calculation and visualization capabilities of Excel
can now easily be used to deliver richer browser-based applications.

In addition to the functionality of Excel Services, Microsoft also provides Office Web
Applications, web-based versions of Microsoft Office tools that can be deployed as a feature
on SharePoint Foundation Server 2010. Using the Excel web application also allows real-time
sharing of web-based Excel documents: more than one user can be working on the same
document at the same time, and changes made by all parties are simultaneously applied to
all open documents.

266 PART III Application Services

Excel is very much the tool of choice when it comes to analyzing numerical data. As
we progress through this chapter, you’ll see how you can leverage this tool to add a new
dimension to your business applications that would previously have been impossible
without a huge amount of development work.

Excel Capabilities on SharePoint 2010
As mentioned, MOSS 2007 introduced Excel Services as a mechanism for using Excel-based
models and data on the server. With SharePoint 2010, Microsoft has extended this offering
to Excel Services 2010, an updated version of the existing Excel Services functionality, and
the Excel Web Application, a browser-based version of the Excel client application.

Let’s take a look at the features available in Excel Services 2010.

Excel Application Services
The Excel Services application service can be configured on SharePoint Server 2010.
Comprising Excel Calculation Services and potentially a collection of user-defined functions,
Excel Services is responsible for loading workbooks and performing appropriate calculations.
Where workbooks contain links to external data or user-defined functions, Excel Calculation
Services is responsible for making the appropriate connections and loading any required
external assemblies. Excel Calculation Services maintains a session for each open workbook
user, and the session remains open until it is either explicitly closed by the user or it times
out. Furthermore, when loading workbooks into memory, Excel Services maintains a cache
of workbooks as well as any associated external datasets.

Excel Calculation Services does not support the complete range of features offered
by the Excel client application. In the previous version of Excel Services, if a workbook
contained a feature that was unsupported, it was impossible to load it using Excel Services.
With Excel Services 2010, a more pragmatic approach has been taken; it’s now possible
to load any workbook, and if the workbook contains unsupported features, a warning is
generated. This allows users to continue using supported features within Excel Services
without having to modify the spreadsheet.

User-Defined Functions
As mentioned, Excel Calculation Services has the responsibility of calling external functions
as required by a workbook. User-defined functions (UDFs) make it easy to extend the
capabilities of Excel Services to include interactions with external systems as well as
custom calculation logic. In fact, anything that can be defined using a .NET assembly
can be referenced as a UDF provided the appropriate interfaces are implemented.

Excel Client Service
As you’ve seen, Excel Calculation Services is responsible for loading workbooks and
performing the necessary calculations. However, when it comes to accessing the results of
those calculations both programmatically and for display purposes, the Excel Client Service
provides a number of different mechanisms.

New in

2010

Chapter 12 Excel Services 267

P
a

rt
 I

II

UDF Real-World Example
Here’s an example of where all of this could be useful: I was involved in the redesign
of a hydrocarbon accounting system. Hydrocarbon accounting, for those uninitiated
in the art, is a consequence of the fact that most oil extraction companies do not
operate refineries or their own dedicated pipelines. Generally speaking, a refinery
operator provides a pipeline that connects up all oil extraction companies to the
refinery. In an ideal world where oil was just oil, this would be a straightforward affair;
oil extraction companies would simply meter how many barrels of oil they sent down
the pipeline and receive payment from the refinery based on the number of barrels.
Unfortunately, oil isn’t just oil. In fact, oil is a generic name for a collection of
hydrocarbons, each with different relative values—for example, lighter hydrocarbons
that make up petroleum tend to have higher values than the heavier components of
bitumen. As a consequence of the different hydrocarbon blends that are pumped into
the pipeline by each extractor, each blend must be periodically sampled to determine
exactly which hydrocarbons are present, and these samples are used to determine
which portion of the consolidated mix that reaches the refinery belongs to which
extractor. Considering that a pipeline may have 40 to 50 different extractors and each
extractor may have several different wells all producing a different blend, you can see
that determining the relative value of the product being pumped is no easy feat.

The system that I worked on made extensive use of Microsoft Excel and Visual
Basic for Applications (VBA) in performing these complex calculations. Samples were
stored in a database and were extracted into a complex series of spreadsheets that
were ultimately used to produce statements for the connected extraction companies.
Since the application worked its magic on the client, all calculations had to be
performed in real-time whenever a statement was required. As you can imagine, this
was a time-consuming process. However, given the technologies of the day, Excel as a
calculation engine was unsurpassed and the system worked well for a number of years.

Now to get back to UDFs and Excel Services—had I been rebuilding this system
today, Excel Services would have allowed the calculations to be performed on the
server. Furthermore, the calculation results would be automatically cached and
available to multiple users effectively instantly. UDFs could be easily used to replace
the complex calculation functions that were previously coded using VBA and sample
data; in my example, this was stored in an Oracle database and entered via a
PowerBuilder user interface, and this could easily be captured using an InfoPath
form and stored in a SharePoint list. The key thing to note in all of this is that the
exact same spreadsheets that we were using in the original system could be reused
with Excel Services with practically no major modifications.

Excel Web Access
So that workbooks calculated using Excel Calculation Services can be rendered in the
browser, Excel Services provides the Excel Web Access web part. This web part effectively
creates HTML based on the output of Excel Calculation Services that mirrors the output

268 PART III Application Services

we would expect to see if we were using the Excel client application. As well as rendering
output, the web part also provides a similar level of interactivity to the Excel client application
as well as a few custom features that have been designed for use in web applications. For
example, an Excel Web Access web part can be placed on a page and configured to display
only a particular chart. If the chart is generated based on a table of data within the
spreadsheet, the data that makes up that table can be filtered by hooking up a filter web
part to the Excel Web Access web part. By using techniques such as this, you can create
highly interactive data visualization tools simply by leveraging the functionality of Excel.

Excel Web Services
Sometimes we don’t really need to see an entire spreadsheet; sometime we’re just interested
in the bottom line and we want to use that value in our application. Using Excel Web Services
allows us to interact with a workbook in much the same way as we can interact with the
Excel object model when building complex client applications. For example, using Web
Services, we can set values within a spreadsheet or extract values from particular cells. We
can even generate a snapshot of a spreadsheet that can be downloaded.

If, for example, we apply this to the hydrocarbon accounting story (in the sidebar “UDF
Real-World Example”) using Excel Web Services, we could produce a simple application
that accepted a range of dates and use those to provide production statistics for a particular
extraction company.

JavaScript Object Model
Using Web Services is all fine and well when it comes to interacting with Excel services from
a client application, but what happens if we simply want to display a particular value of a
web page? Or perform a calculation based on user input? Of course, we can still use Web
Services, but calling Web Services from JavaScript is not for the faint of heart and imposes
restrictions on the implementation of the Web Service itself. One of the new features of
Excel Services 2010 is the JavaScript Object Model. (Strictly speaking, it’s called the
ECMAScript object model, but that term’s always had a hint of Ghostbusters for me so I’m
going to stick with the JavaScript Object Model.) The JavaScript Object Model (JSOM) can
be used by inserting JavaScript onto a page containing the Excel Web Access web part. In
effect, the web part emits the client-side objects necessary to interact with its contents via
JavaScript.

REST API
One technology that’s gained a lot of momentum in recent years is Representational
State Transfer (REST). I say it’s gained a lot of momentum because REST, like XML, is a
description of an aspect of something that we already know and love and have been using
successfully for many years: the World Wide Web. REST describes the architecture of the
Web, and one of its key principals is that each resource should have a unique global identifier.
Resources can be accessed using a standardized interface, and representation of the
resource can be exchanged using a well-known format. Sound familiar? In web terms,
this means that each resource should have a uniform resource indicator (URI), and the
URI can be accessed using the ubiquitous Hypertext Transport Protocol (HTTP), and
a representation of the resource generally in the form of HTML can be retrieved.

The reason REST has gained a lot of attention in recent years is due to the extension
of these principles into other areas. What if a resource is not just a web page? What if a

New in

2010

New in

2010

Chapter 12 Excel Services 269

P
a

rt
 I

II

resource is a record in a dataset? And, what if, rather than an HTML representation, a
JSON representation is returned? You can see that we’re stepping into the world of Web
Services without the formality that comes with Simple Object Access Protocol (SOAP).
For a lot of purposes, this is a more attractive proposition.

The key difference between a REST-ful web service and a SOAP web service is the
existence of a message. SOAP is all about sending a well-defined message to a particular
endpoint (or resource in REST parlance), whereas REST is about communicating with the
endpoint only. There is no message, just a simple request for a specific resource. We could,
of course, make the case that SOAP is an implementation of a REST-ful service, but that’s a
whole different story.

The introduction of REST to Excel Services is an immensely useful feature, especially
when you consider that one of the main uses of Excel Services is to create and use server-
based calculation models. The thing with models is that they exist only to provide results.
More often than not, the model itself is not of interest, only the conclusions that can be
reached by using it. By applying REST principles to a model, we can retrieve only the
conclusions. More importantly, we can do so by using a human-readable uniform resource
locator (URL), and this exponentially increases the potential for reusing that data.

For example, if an Excel workbook contains a chart of sales figures that is generated
using data in the workbook, using REST we can pick up the URL for the chart itself and use
it within our web site in the same way that we’d use any other image. The difference between
using a normal image and a REST URL is that the chart will be updated automatically as the
data in the underlying workbook changes. To give some contrast, consider what would be
involved if we had to do this using SOAP.

Excel Web App
With the announcement of Office 2010, Microsoft introduced a new product version: the
Office Web Apps. Office Web Apps consists of new web-based versions of Excel, Word,
PowerPoint, and OneNote, which are available via Windows Live, Microsoft Online, or
as an add-on service for SharePoint 2010.

The key aim of the Excel Web App is to mirror the user experience of the client
application within the browser, allowing users to access their spreadsheets from anywhere
using only a web browser. Beyond this, the web-based nature of the product delivers a few
additional features that are not available in the client version. Probably the most significant
of these is the ability to co-author documents. Consider the current situation when using
Excel client, where each user editing a file must apply a lock, and a locked file cannot be
edited by any other user. As developers, we experience this type of problem regularly when
using source code control systems. There’s no more heinous a crime than a developer
locking a file and then going off on vacation for two weeks. The Excel Web App prevents
this problem by allowing all users with the appropriate permissions to edit a document
simultaneously. Changes are pushed down in real time to all user sessions.

Using Excel Services, this collaboration can be further enhanced by using Excel Web
Services or the REST API. It’s possible for an external application to update a spreadsheet
using a web service call or the REST API. Just as with other changes, these will be automatically
pushed down to open user sessions.

New in

2010

270 PART III Application Services

PowerPivot
I read a paper recently that suggested that the average cost of a single reusable business
report could be as high as $20,000. At first, this seemed like an astronomical figure, but
the more I thought about it, when you factor in the infrastructure costs and the to and
fro between business users and developers, it’s not an unrealistic cost.

Of course, the bigger question that this raises is whether the information provided by the
report is sufficiently valuable to justify the cost incurred in obtaining it, and this highlights
one of the big conflicts of business intelligence. To achieve the goal of business intelligence
is to make up-to-the-minute, relevant information available to the right people at the right
time. The problem is that determining what information is relevant and how it should be
collected and presented is usually filtered through business analysts and IT project staff.
Even when report definitions remain true to their original purpose, the world has changed
by the time the reports are delivered. True business intelligence must incorporate a large
self-service element, not just in terms of retrieving data from a selection of predefined
reports but in using this data together with data from many heterogeneous sources in a
manner that best fits the problem at hand.

PowerPivot is an add-in for SQL Server 2008 R2 and Excel 2010 that aims to address this
issue directly. In effect, PowerPivot allows users to create unique data models from a range
of data sources and embed the completed model within an Excel workbook. After the data
is embedded within Excel, it can be easily analyzed using PivotTables, charts, or any of the
myriad analysis features available within Excel.

You might be thinking, what’s different between PowerPivot and simply using external
data sources? Excel is a versatile tool, but it’s fair to say that it has two main functions: to
create numerical models and to analyze numerical data. When it comes down to creating
models, using external data sources is a great way to import raw data into a model; however,
when we’re using Excel as an analysis tool, there are a few issues with imported data. The
first issue is volume: Excel has a limit of 1 million rows. The next issue is performance: If
you’ve tried to run a PivotTable on a sheet with a huge number of rows, you know it’s not
a pretty picture! PowerPivot addresses both of these issues by using an in-memory version
of Analysis Services to process queries and store the underlying data. This means that it’s
possible to analyze data sets containing tens or even hundreds of millions of rows, and,
furthermore, it’s fast. As the old adage goes, “Always use the right tool for the job,” and
the right tool for analyzing high volumes of data is Analysis Services. PowerPivot is all about
making the right tool available to the right audience at the right time.

Impressive as PowerPivot is, this chapter doesn’t cover it in full; see Chapter 18 for more.

Configuring Excel Services
Developing solutions using Excel Services is pretty straightforward. We’re all familiar with
Excel and what it can do, so all we really need to do is save our spreadsheet onto our
SharePoint server and our mission is accomplished. (Maybe it’s not quite as simple as that,
but the point I’m making is that we’re not facing a near vertical learning curve here.)

Where we do need to pay a bit more attention is in the configuration of Excel Services.
Left unchecked, users could upload server-crushing calculation mayhem. They could easily

New in

2010

Chapter 12 Excel Services 271

P
a

rt
 I

II

create a spreadsheet that dragged in the entire contents of the company customer relationship
management (CRM) database and performed string matches on description fields before
extracting the top ten customers and the value of their sales during the past two weeks. We
could, of course, argue that this is a job for the IT pros and it’s probably fair to say that as a
day-to-day task it is, but what we’ll find as we start developing solutions using Excel Services
is that practically all the problems we’ll encounter come down to configuration issues.

Service Application Settings
Chapter 9 covered the Service Application Framework and how it’s used by SharePoint to
provide services that can be shared among web applications. It will probably come as no
surprise to learn that Excel Services is implemented using the Service Application Framework.

To configure Excel Services, we use the SharePoint 2010 Central Administration tool.
From the Central Administration home page, the Excel Services configuration settings
can be reached by clicking Application Management | Manage Service applications | Excel
Services. Of course, if more than one instance of Excel Services is running, you’ll be able
to configure that using whatever name you assigned when you set it up.

When you’re configuring and using Excel Services, keep in mind the notion of trust.
System administrators determine what is trusted and what isn’t, and users are allowed to
create and use workbooks that make use of trusted resources only. So, for example, a system
administrator may decide that data from a particular source—such as a data warehouse—is
trusted, whereas data from a second source—such as a CRM application—isn’t trusted.
Making this distinction doesn’t mean that the CRM system data is any less accurate than
the data warehousing data; of course, the opposite is likely true. What it means is that the
system administrator has determined that the schema and data volumes within the CRM
system are likely to cause issues if they are used freely within Excel. By choosing not to
trust this data source, users will be unable to reference it when creating workbooks. So the
notion of trust is actually about trusting the resource to play nicely within Excel Services.

The configuration settings for Excel Services involve five sections, as shown next. I’ll
quickly run through these, calling out any settings that are relevant to developers.

272 PART III Application Services

Global Settings
As you might expect, this section covers most of the high-level configuration options such as
load balancing and memory utilization. For the most part, these settings are unlikely to cause
developers problems and are best left to the IT pros as part of maintaining and configuring
the farm overall—with one exception: the external data settings. When a spreadsheet is
created that connects to an external data source, you need to consider a few options for
authentication. These are covered in more detail later in the section “Using Data Connection
Libraries,” but for now you should know that if the authentication type is set to None,
connections are made using the unattended service account. Since the unattended service
account may be used to connect to many different types of data source, the Secure Store
Service is used to map appropriate credentials to the account. This allows non-Windows
credentials to be used where appropriate. The configuration of this is covered in the
“Demonstration Scenario” section later in the chapter.

Trusted File Locations
The Trusted File Locations section is probably not going to cause you too many problems.
In previous versions of SharePoint, this was not configured by default, so no Excel Service
workbooks would load properly. Thankfully, with SharePoint 2010, the default setting is to
allow all workbooks stored within SharePoint to be accessed using Excel Services.

You can use workbooks that are not stored within SharePoint within Excel Services.
Trusted file locations can be created for Universal Naming Convention (UNC) paths or
other web sites. A few things worthy of mention include the User-Defined Functions setting
and the settings in the External Data section. Although User-Defined Functions have a
separate configuration heading, they can be disabled or enabled at the trusted file location
level. By default, UDFs are allowed. In the External Data section, external data can be
disabled at the trusted file location, and the ability to refresh external data when using
the REST API is determined by a setting in this section.

Trusted Data Providers
Trusted Data Providers defines the lists of drivers that can be used when connecting to
external data sources. If a driver isn’t listed, it can’t be used to create a connection. Having
said that, even if a driver is listed, there’s no guarantee that it can be used.

Trusted Data Connection Libraries
Data Connection libraries serve a few functions: They allow a system administrator to create
a library with a series of preconfigured connections that can be easily used by business users
for various tasks. In addition, data connection information is stored in a central location,
and any changes that may be required can be made globally without having to update
myriad documents throughout an organization. At the Trusted File Location level, you
can restrict data connections to trusted data connection libraries only. Unless this option
is selected, users are free to create their own data connections using any of the trusted
providers and embed those connection details within a workbook.

UserDefined Function Assemblies
In this section, you can configure any assemblies containing user-defined functions. UDF
assemblies can either be loaded from a file location or from the Global Assembly Cache

Chapter 12 Excel Services 273

P
a

rt
 I

II

(GAC). Note that the assembly must be available on all machines running Excel Services.
For ease of administration, an assembly can be disabled, meaning that it remains configured
but can’t be used by Excel Services.

Demonstration Scenario
To demonstrate the capabilities of Excel Services, consider the following scenario:

AdventureWorks, one of your clients, has implemented SharePoint 2010 as its
corporate intranet platform. To increase awareness of company performance within
the organization, you’ve been asked to add an indicator of global sales to the front
page of the intranet site. Since AdventureWorks is a global organization, it should
be possible to filter the sales figures by geographic region, and the amounts shown
should be visible in a range of currencies, selectable by the user.

It probably comes as no surprise to learn that we can implement this solution using
Excel Services. We can render an interactive chart using the Excel Web Access web part,
and if we base the chart on a pivot table, data will be automatically refreshed. To filter the
sales figures by geographic region, we can incorporate a slicer into the design, which will
allow users to select from a graphical list of available regions.

Displaying the results in various currencies is a bit more involved, since the data in the
underlying database is stored in a single currency only. To achieve this, we’ll create a custom
UDF that will retrieve current exchange rates via a web service call. We’ll then make use of
that data to recalculate the workbook in the appropriate currency. Because we want to allow
the user to select from a list of currencies, we’ll make use of the JavaScript API to pass in a
currency code selected from a drop-down list. When the currency code is passed into the
workbook via the API, the workbook will be refreshed using the appropriate currency.

Set Up Adventure Works Sample Database
To provide some sample data to work with in our various examples, we need to download and
install the SQL Server 2008 sample databases from www.codeplex.com/MSFTDBProdSamples.
Our examples make use of the AdventureWorks OLTP database installed on the local
instance of SQL Server 2008.

Create a Sample Site
Now we’ll create a new blank site to use for development. Note that if we were creating a
complete Business Intelligence (BI) solution or intended to use the site mainly for hosting
dashboards, the Business Intelligence Center site template would be a more appropriate
place to start. Since we’re using only a single Excel workbook, we’ll make use of a basic
blank site.

 1. In SharePoint Designer, choose File | Sites, and then click the New Blank Web Site
button. Type the name of the new site as http://localhost/Chapter12.

 2. We’ll add a new document library to host our Excel Workbook. From the Site
Objects pane, select Lists and Libraries.

www.codeplex.com/MSFTDBProdSamples

274 PART III Application Services

 3. From the ribbon, select Document Library | Document Library. Name the new
library Excel Workbooks:

Create a Workbook for Use with Excel Services
Before we can make use of an Excel workbook in SharePoint 2010, we need to create it
using the Excel client application. For our demonstration scenario, we need a simple
workbook that contains a pivot table and a pivot chart. The pivot table should be generated
from data stored in the organization’s ERP system.

 1. Open Excel 2010. A new blank workbook will be automatically created, and we can
make use of this workbook for our demonstration. First, we need to add a data
connection so that we can retrieve appropriate sales data. On the Data tab, in the
Get External Data section of the ribbon, select From Other Sources | From Data
Connection Wizard, as illustrated:

Chapter 12 Excel Services 275

P
a

rt
 I

II

 2. In the Data Connection Wizard dialog, accept the default selection of Microsoft
SQL Server by clicking Next to proceed.

 3. In the Server Name text box, enter .\SQLExpress. For the Log On Credentials,
select Use Windows Authentication. Click Next.

 4. In the Select Database and Table step, change the selected database to
AdventureWorks, and uncheck the Connect To A Specific Table checkbox
as shown. Click Finish to complete the wizard.

 5. After the wizard has completed, the Select Table dialog is displayed. Although the data
that we require comes from more than one table, we need to select a table to create
a connection in
our workbook.
Select the
SalesOrderHeader
table, as shown, and
then click OK.

 6. The Import Data
dialog allows us to
select what we want
to do with the
connected data
and includes a few options, such as Table and PivotTable as well as a range selector
that we can use to specify where the data should appear in the workbook. When
using Excel Services, you should be aware that only PivotTables can be refreshed
on the server. Although it is possible to add a table and use the data within the
table in Excel Services, the only way to refresh the table data will be to open the
spreadsheet in Excel and refresh manually. Bearing this in mind, select PivotTable
Report and put the data at the default location of A1 in the current worksheet.

276 PART III Application Services

Configure a Data Connection
A new PivotTable is inserted on the page at the specified location. Before we start
configuring the PivotTable, we need to review our connection settings. Recall that we
selected the SalesOrderHeader table as the source of our data; before we can set up our
pivot table, we need to change this to use a SQL query instead.

 1. From the Data tab, select the Connections option. In the Workbook Connections
dialog, select the ._sqlexpress AdventureWorks connection. Notice that your
connection may have a slightly different name, depending on your database
server and whether an existing connection with that name already exists.

 2. Click Properties to view the connection details. Change the connection name to
AdventureWorksLast30DaysSales.

 3. Click the Definition tab to see details of the connection string, the command type,
and the command text as well as a few other options. Change the Command type
to SQL and enter the following SQL statement in the Command Text text box:

SELECT H.OrderDate,
 T.Name as Territory,
 T.CountryRegionCode as CountryCode,
 sum(TotalDue) as TotalSales
FROM [Sales].[SalesOrderHeader] as H
INNER JOIN [Sales].[SalesTerritory] as T
ON H.TerritoryID=T.TerritoryID
WHERE H.OrderDate>'2004-07-01'
GROUP BY H.OrderDate, T.Name, T.CountryRegionCode

 4. When a data connection is used by Excel, a copy of the connection information
is stored in the workbook. In the Properties dialog, we’re effectively editing the
properties of this cached copy of the data connection. To update our locally saved
connection file, click Export Connection File and then, in the file dialog that
appears, type the filename as AdventureWorksLast30DaysSales.odc. Click Save
to create the new Office Database Connection file.

 5. Click OK to close the Properties dialog, and then click Close to close the Workbook
Connections dialog. Notice that the fields listed in the PivotTable Field List have
changed to match those in our amended query.

Configure a PivotTable to Act like an External Data List
PivotTables are a great help for analyzing a data set interactively. We can easily add in row
headers or columns headers or formulas and grouping to the data. Sometimes we don’t
need to do any of that clever stuff, though; we might want a simple list of the data as it looks
in the database. In Excel client, we could of course achieve such a result by creating an
External Data List as opposed to a PivotTable. However, External Data Tables aren’t supported
in Excel Services, so we’re stuck trying to reign in the analytical faculties of the PivotTable
to produce a more sedate output.

To create a PivotTable that behaves in a similar manner to an External Data List, take
the following steps:

Chapter 12 Excel Services 277

P
a

rt
 I

II

 1. From the PivotTable Field List, drag OrderDate, CountryCode, and Territory into
the Row Labels section. Drag Sum of TotalSales into the Values section, as illustrated:

 2. From the PivotTable Tools tab, select the Design menu. In the Layout section of
the ribbon, select Report Layout | Show In Tabular Form. Again from the Layout
section, select Report Layout | Repeat All Item Labels.

 3. The resulting PivotTable is starting to look a bit like a data list. We can now remove
the total rows by selecting Subtotals | Do Not Show Subtotals from the Layouts
section of the ribbon.

 4. To remove the +/– buttons, open the Options menu from the PivotTable Tools tab.
Click the +/– button on the Show section of the ribbon to toggle the buttons off.

Using Named Ranges in Excel Services
You may be wondering why we had to go to the trouble of changing our PivotTable to a flat
data list. It’s fair to say that, generally speaking, we wouldn’t normally need to take this step
when using data in Excel Services, but this case is a bit different. The TotalSales value
retrieved from the database represents the sales value in US dollars (USD). However, our
demonstration scenario requires us to be able to present this data using a variety of currencies.
So that we can convert this value to a different currency, we need to use a formula, and
formulas within PivotTables are limited to include only data from within the PivotTable. In
our case, the exchange rate value that will be used by our formula will be stored elsewhere
in the workbook, so using a PivotTable formula isn’t an option. We can achieve our desired
outcome by flattening our PivotTable and then adding appropriate formulae in adjacent cells.

278 PART III Application Services

Let’s move on to add a few named ranges that will be used on our calculation logic:

 1. Navigate to Sheet2 in the Excel workbook. We’ll use this sheet to store the values
required by our exchange rate calculation.

 2. In cell A1, type Exchange Rate. In the adjacent cell (B1), type the number 1. We’ll
come back to this later when we create a UDF. With the cell B1 selected, in the
Name box, enter ExchangeRate, as illustrated:

 3. In cell A2, type Currency Code. In the adjacent cell (B2), type USD. With cell B2
selected, in the Name box, type CurrencyCode.

 4. In cell A3, type Chart Title. In the adjacent cell (B3), add the following formula:

="Last 30 Days Sales in " & CurrencyCode

 When completed, the first few cells of Sheet2 should look like this:

Perform Calculations Using PivotTable Values
Now that we’ve defined the parameters for our exchange rate calculation, we can add the
necessary formulae to Sheet1.

 1. Switch back to Sheet1. In column E, cell E1, add header text
SelectedCurrencyValue.

 2. In cell E2, add this formula:

=GETPIVOTDATA("TotalSales",A1,"OrderDate",A2,"Territory",C2,"CountryCode",
B2)*ExchangeRate

Chapter 12 Excel Services 279

P
a

rt
 I

II

 This formula extracts the value of the TotalSales column from the PivotTable,
where the OrderDate, Territory, and CountryCode columns match the values
contained in cells A2, C2, and B2. In plain English, the formula returns the
TotalSales value for the current row.

 3. Since we want to perform this calculation for each row in the table, we need to use
this formula in every cell down to the bottom of the table. To do this, type E2:E206
in the Name box, and then press ctrl-d. Alternatively, we can manually select the
cells in question and then click Fill | Down from the Editing section of the Home
ribbon.

NOTE Using formulae in this manner requires special consideration when the PivotTable referenced
will be periodically refreshed. If, during a subsequent refresh, the PivotTable ends up with a different
number of rows, the formulae will not automatically be filled down to accommodate the growth of
the table. It is important that you ensure that the size of the returned dataset remains constant, and
generally this can be done using Transact-SQL (T-SQL) or by calling a stored procedure to produce
the required data.

 4. Since we’ll use the data contained in the PivotTable and our calculated column
later, we’ll give it a name for ease of reference. Either manually highlight the cells
in the range A1:E206 or enter the range in the Names box. Once the range is
highlighted, type SourceDataTable. Sheet1 should now look like this:

280 PART III Application Services

Add a PivotChart
Now that we’ve created a data source that can be automatically refreshed by Excel Services,
we can move on to create a chart based on the source data. We’ll render the chart on our
web page to provide a graphical representation of the sales data.

 1. Select Sheet3. We’ll use
this sheet to contain the
elements of our workbook
that will be rendered on
our sample site. Choose
Insert | PivotTable |
PivotChart.

 2. In the Create PivotTable
with PivotChart dialog,
type SourceDataTable as
the Table/Range:

 3. From the PivotTable Field
List, drag OrderDate into
the Axis Fields section,
CountryCode into the Legend Fields section, and
SelectedCurrencyValue into the Values section. The
field lists should look as shown:

 4. Our chart is automatically generated based on our
PivotTable data. However, the default clustered bar
chart type doesn’t make it easy to visualize our data
set, so let’s change this to something more appropriate.
From the Design menu, select the Change Chart Type
button. In the Change Chart Type dialog, select the
Stacked Area chart type.

 5. To add a title to our chart, select the Chart Title
button from the Layout menu. Since we want our
chart title to be automatically generated based on
the currency code selected, we can add the following
formula:

=Sheet2!B3

Chapter 12 Excel Services 281

P
a

rt
 I

II

 The PivotChart should look like this:

Publish to Excel Services
The first version of our workbook is now complete and ready to be published to our
SharePoint site:

 1. In Excel, click the File menu to enter the backstage area. Select Share from the list
of options and then select Publish to Excel Services.

 2. Set the path to http://localhost/Chapter12/Excel Workbooks and the filename to
Last30DaysSales.xlsx.

 3. Click to save the file to SharePoint.

TIP When using Excel 2010 on Windows 2008 server, trying to save files to SharePoint doesn’t quite
work as it should. This is because the WebClient service that maps the SharePoint URL to a UNC path
behind the scenes, isn’t configured by default since it has no purpose on a server operating system.
To fix this problem, install the Desktop Experience feature using Server Manager. See Chapter 2 for a
step-by-step guide on configuring Windows 2008 Server as a development machine.

Create a User Interface Using the Excel Web Access Web Part
Now that we have our workbook published to SharePoint, we can move on to make use of it
when generating a user interface for our sample application. We’ll customize the homepage
of our site to include our sales chart.

 1. Navigate to http://localhost/Chapter12/Default.aspx. From the Site Actions
menu, choose Edit Page.

 2. In the Left Web part zone, click Add A Web Part.

 3. Select the Excel Web Access (EWA) web part from the Office Client Applications
category. Click Add to include the web part on the page.

NOTE If this web part is missing from the web part gallery, ensure that the SharePoint Server Enterprise
Site Features and SharePoint Server Enterprise Site Collection Features are enabled for the current
site and site collection.

282 PART III Application Services

 4. To set the properties of the web part, click the Click Here To Open The Tool
Pane link.

 5. In the Workbook Display section, type the workbook as /Chapter12/Excel Workbooks/

Last30DaysSales.xlsx.

 6. Since we’re interested only in the chart for now, in the Named Item field type
Chart 1. Click Apply to see the results.

We’ve now got our PivotChart on the page ready for use. Let’s tidy up a few of the
remaining web part settings to give the page a more integrated look:

 1. Set the Type of Toolbar to None. This will hide the toolbar that appears above
the chart.

 2. In the Appearance section, set the Chrome type to None.

 3. Click OK to commit the changes and stop editing the web part.

 4. From the Page ribbon, click the Stop Editing button to switch back to View mode.

Adding Interactivity Using a Slicer
You’ve seen how easy it is to make use of Excel data on a page when using the Excel Web
Access web part. Let’s move on to look at an example of the interactive features available
via the web part. Our demonstration scenario requires that the data displayed in our chart
be filterable using geographical locations. Although we have listed multiple series, one for
each country code, at the moment we don’t have any way to select which series should be
displayed on the chart.

This section introduces the Slicer, one of the new features available in Excel 2010 that
works very well with Excel Services. Before we can use a Slicer, we need to add it to our
Excel workbook.

 1. Navigate to the Excel Workbooks document library at http://localhost/Chapter12.
Open the Last30DaysSales.xlsx file using Microsoft Excel by right-clicking the file
and selecting Edit in Microsoft Excel from the context menu.

 2. Note that the workbook opens in Protected View mode. This happens because the
workbook is opened from a web site as opposed to a local folder. Click Enable
Editing to proceed.

 3. The next warning we receive says that “Data Connections have been disabled.” This
is a standard security feature of Excel that prevents active content from running
until it is explicitly allowed. Click Enable Content to refresh the connected data.

 4. We have the option to make the document trusted. Click Yes, and the workbook
won’t open in Protected View mode each time. This is OK since we’ll be doing a bit
of work with it.

 5. Adding a Slicer is simple. Select the PivotChart and then, from the Analyze menu,
click the Insert Slicer button.

 6. From the Insert Slicers dialog, check the Territory checkbox and then click OK to
add the Slicer to our worksheet.

New in

2010

Chapter 12 Excel Services 283

P
a

rt
 I

II

 7. To see the Slicer in action, try selecting one or more (by holding down the ctrl
key while clicking) of the listed Territory values. We can see that the PivotTable
data is filtered based on our selection and the PivotChart is redrawn accordingly.

Grouping Excel Items for Display Purposes
Since we want to display only the Slicer and chart on our web page, we need to lay them out
in a specific manner. You’ll remember that when we configured the EWA web part earlier
in the chapter, we entered a specific named item to display—Chart 1. We now need to
display the chart and the Slicer, and since we can enter only one named item, we need
to group these into a single item.

As you’ve seen earlier, named ranges can be defined by selecting a range of cells and
then adding a name. We’ll use a named range to refer to our chart and Slicer control.

 1. Place the chart and the Slicer next to each other on the sheet.

 2. Resize the chart and the Slicer so that they fill entire cells as much as possible. This
will reduce unnecessary white space when the control is rendered in the web page.
The zoom function is very useful for this purpose.

 3. Select the underlying range using one of the methods described earlier and type
the name ChartAndSlicer in the Name box.

 4. Click the Save icon in the upper-left corner to save the changes to SharePoint. We’ll
keep the workbook open for now since we’ll be making additional changes later.

If we now open the home page of our sample site using Internet Explorer, unsurprisingly
we’ll find that our chart is still there just as before, without our new Slicer control. One
thing that may be apparent is that the chart now shows only the territories that we selected
earlier when we were messing around with the Slicer in Excel client. Note that slicer
selections are published along with the workbook, so it’s important to make sure that
an appropriate default is set before saving.

Let’s move on to change our Excel Web Access web part to display our Slicer as well as
our chart.

 1. From the SiteActions menu, select Edit Page.

 2. Highlight the Excel Web Access web part by clicking the header; then, from the
Web Part Tools tab, select Web Part Properties from the Options menu.

 3. Change the Named Item to ChartAndSlicer. Click Apply to view the change.

 Our recently defined named item
should be displayed on the page, but,
instead, we’re presented with the
following error message stating that
the named item cannot be displayed:

 4. Click OK to acknowledge the error
message. Then from the Page menu,
select Stop Editing. The page will now
be blank except for the error message.

284 PART III Application Services

Change Published Items Within a Workbook
When we initially published our workbook to Excel Services, we simply gave it a name and
accepted the default values. Whenever we click the Save icon, rather than re-publishing the
workbook, we’re merely saving the data back to the document library. The significance here
is that when publishing a workbook to Excel Services, we have the option of specifying
additional metadata, but when saving, the metadata is not changed. We received the error
because the metadata did not contain details of our new named item.

 1. Switch back to Excel client. Click the File menu to enter the backstage area. Select
the Share option, as shown:

 2. The Share section offers two options: Save to SharePoint and Publish to Excel
Services. As described, the difference between these two options is the ability to add
metadata that’s useful to Excel Services. Let’s see what that means in practice. Click
Save to SharePoint.

 3. Click the Current Location icon to open the Save As dialog, which automatically
displays the contents of our Excel Workbooks document library and allows us to
save the workbook in the normal manner. Click Cancel and then return to the
Share section of the backstage area.

 4. This time, click Publish To Excel Services to open the Save As dialog, but notice that
an Excel Services Options button now appears in the bottom section of the dialog.

 5. Click the Excel Service Options button to define or overwrite metadata for the
document. In the Excel Services Options dialog’s Show tab, select Items In The
Workbook from the drop-down list.

Chapter 12 Excel Services 285

P
a

rt
 I

II

 6. Check the All Named Ranges and the All Charts options to ensure that they will be
available for use by the EWA web part.

NOTE At the time of writing, a bug (or feature, depending on your point of view) exists within Excel 2010.
Named ranges that are blank are not detected by the Excel Services publishing process and therefore
don’t appear in the list of Items in the workbook. To resolve this issue, select the ChartAndSlicer
named range and press the SPACEBAR. This will ensure that the range appears in the list of metadata.

 7. Click Save to complete the publishing process.

With our metadata updated appropriately, if we return to the sample site home page,
we can see that our EWA web part now displays our chart and Slicer as expected. The Slicer
behaves in much the same manner as we saw earlier when we used it within the Excel client
application.

Using the Excel Services REST API
Although we could add another EWA web part to our page to display the underlying data
for our chart, doing so would introduce unnecessary overhead since we don’t need any
level of interactivity with the data. Notwithstanding our unquestioned dedication to
ensuring optimum performance at all times, another really good reason for not adding a
second EWA web part is to give us an opportunity to explore the new REST API that ships
with Excel Services 2010.

Excel Services REST API Syntax
The REST API, as discussed earlier, provides a lightweight mechanism for accessing content
within Excel workbooks that have been published using Excel Services. In effect, accessing
data using a REST-ful service comes down to using the correct URL, and for the Excel
Services REST API, the URL format is http://<RootUrl>/_vti_bin/ExcelRest.aspx/
<Filename>/model/<Selector>?<Parameters>.

RootUrl
The RootUrl value contains the URL of the SharePoint site containing the workbook. In our
case, this will be http://localhost/Chapter12.

Filename
The Filename value contains the relative path to the Excel workbook. In our case, this will be
Excel Workbooks/Last30DaysSales.xlsx. However, since we’re creating a URL, we need to
encode the space in Excel Workbooks. This value then becomes Excel%20Workbooks/
Last30DaysSales.xslx.

Selector
The Selector value is where the fun begins in the REST URL. Let’s run through a quick
demonstration of how it works.

If you enter the following URL into a web browser, you’ll see a page listing the types of
data available within the model:

http://localhost/Chapter12/_vti_bin/ExcelRest.aspx/Excel%20Workbooks/
Last30DaysSales.xlsx/model

http://<RootUrl>/_vti_bin/ExcelRest.aspx/<Filename>/model/<Selector>?<Parameters>
http://<RootUrl>/_vti_bin/ExcelRest.aspx/<Filename>/model/<Selector>?<Parameters>

286 PART III Application Services

As you can see, in the case of Excel, the types available are Ranges, Charts, Tables, and
PivotTables.

You can build up the selector value by first deciding in which type of data you’re
interested. In our case, it’s Charts. Enter the following URL into a web browser to see a list
of available charts:

http://localhost/Chapter12/_vti_bin/ExcelRest.aspx/Excel%20Workbooks/
Last30DaysSales.xlsx/model/Charts

From the returned data, you can see that our workbook contains only one chart, Chart 1.
Let’s create a selector for the Chart 1 object. In the browser, enter the following URL:

http://localhost/Chapter12/_vti_bin/ExcelRest.aspx/Excel%20Workbooks/
Last30DaysSales.xlsx/model/Charts(‘Chart%201’)

Notice that this simply specifies that you want Chart 1 from the Charts collection. Again
the space is encoded in the name Chart 1 since we’re building a URL. This time the browser
will display a Portable Network Graphics (PNG) image representing our chart.

Parameters
The Parameters value allows us to pass values into Excel Services as part of our request.
For example, our workbook defines a named range called CurrencyCode. The value of
CurrencyCode is used to produce the chart title, so by changing CurrencyCode as part
of our REST URL, our chart title will change as well. To see this in action, in the browser,
enter the following URL:

http://localhost/Chapter12/_vti_bin/ExcelRest.aspx/Excel%20Workbooks/
Last30DaysSales.xlsx/model/Charts(‘chart%201’)?Ranges(‘CurrencyCode’)
=MyCurrencyCode

You can see that the chart has been produced with a label that reads Last 30 Days Sales in
MyCurrencyCode.

Retrieving a PivotTable Using REST
Now that you understand how a REST URL can be generated, let’s put this knowledge to
good use by creating a URL that we can use to include data from our PivotTable on our
sample site home page.

If we enter the following URL in the browser, we’ll get a 404 error:

http://localhost/Chapter12/_vti_bin/ExcelRest.aspx/Excel%20Workbooks/
Last30DaysSales.xlsx/model/PivotTables(‘PivotTable1’)

Before we can access items using the REST API, we need to make sure that we’ve
published the appropriate metadata from the Excel client. You’ll remember earlier that
we didn’t select any of the PivotTables in our list of items, and that’s why we’re seeing a
404 error now.

 1. Switch back to the Excel client application. Before we publish our PivotTables,
let’s give them useful names. Switch to Sheet3 and then click anywhere within
the PivotTable.

Chapter 12 Excel Services 287

P
a

rt
 I

II

 2. From the PivotTable Tools tab, select the Options menu. In the PivotTable section,
in the PivotTable Name box, type ChartData, as illustrated:

 3. Switch to Sheet1 and type the name of the PivotTable as SourceData.

 4. We’ll add an additional PivotTable to summarize our sales figures. Add a new
worksheet named Sheet4. Insert a new PivotTable that makes use of SourceDataTable
as its data source.

 5. Add OrderDate as a RowLabel and SelectedCurrencyValue as a Value.

 6. Right-click the Sum of SelectedCurrencyValue column header, and then select
Value Field Settings. In the Custom Name text box, type Total Sales.

 7. Name the new PivotTable TotalSalesData.

 8. Click the File menu to enter the backstage area, and then click the Publish To
Excel Services button in the Share section.

 9. Click the Excel Services Options button, and then select All Pivot Tables in the
Items In The Workbook section.

 10. Save the workbook to update the metadata.

We can now enter the following URL in the browser and see an HTML representation
of our chart data:

http://localhost/Chapter12/_vti_bin/ExcelRest.aspx/Excel%20Workbooks/
Last30DaysSales.xlsx/model/PivotTables(‘TotalSalesData’)

Using REST-Generated Content Within a Web Part Page
Now that we have a URL, the next step is to make use of that on our home page. The
easiest way to include additional content on the page is to use a PageViewer web part.

 1. From the SiteActions menu, select Edit Page.

 2. Click Add a Web Part in the Right web part zone, and then select the Page Viewer
web part from the Media and Content category.

 3. Set the Link property of the Page Viewer web part to the REST API URL for our
TotalSalesData PivotTable.

 4. Click OK to commit the changes, and then click Stop Editing from the Page ribbon
to return to view mode.

288 PART III Application Services

We’ve now created a user interface for our sales data that allows users to filter data by
territory. As well as using the EWA web part, we’ve also included content generated using
the REST API on our page via a Page Viewer web part. All of the items presented in the
user interface are dynamically generated based on data from an external data source. As
the underlying data changes, the user interface will be automatically updated to reflect
those changes. Bear in mind, so far, we haven’t written a single line of code.

User-Defined Functions
We’ve managed to achieve some pretty impressive results by using the tools that are available
out of the box with Excel 2010 and Excel Services. However, one of the areas from our
demonstration scenario that we haven’t properly addressed is the requirement to dynamically
convert the sales data to a range of currencies. We’ve designed our workbook to allow for
such a calculation; we just haven’t done the actual calculation part yet, and there’s a good
reason for that: Excel doesn’t have a function for automatically retrieving exchange rates
for a stated currency.

In this section, we’ll create a UDF that accepts a currency code as an input parameter.
The function will then connect to a web service to retrieve a current exchange rate for the
selected currency and will pass the resulting value back to Excel for use by the calculations
within our workbook.

Attributes Used when Creating UDFs
UDFs are simply managed code assemblies that have been marked up using specific
attributes that denote methods and classes that are callable from Excel Services.
The attributes in question can be found in the Microsoft.Office.Excel.Server.Udf
namespace, which is defined in the Microsoft.Office.Excel.Server.Udf.dll assembly.
The following attributes are available.

UdfClassAttribute
This attribute is applied to a public class and is used to denote that the class may contain
UDFs that can be used by Excel Services.

UdfMethodAttribute
This attribute can be applied to public methods and is used to indicate that the method
is a UDF and can be used by Excel Services. The UdfMethodAttribute accepts a couple of
properties:

IsVolatile This Boolean value specifies whether or not the UDF should be considered
volatile. When referring to Excel functions, specifying that a function is volatile indicates
that the function should be reevaluated whenever any value in the workbook changes. The
default behavior is non-volatile, which means that the function is reevaluated only when
any of the parameters that are passed into it change. Generally, the default behavior is
appropriate unless the UDF is reading other related data behind the scenes that may have
changed as a result of activities elsewhere in the workbook.

Chapter 12 Excel Services 289

P
a

rt
 I

II

ReturnsPersonalInformation This Boolean value determines whether the identity of the
calling user can be accessed via the executing thread’s current principal. This means that
where this value is set to true, details of the calling user can be retrieved as follows:

[UdfMethod(ReturnsPersonalInformation = true)]
public string GetCallersUsername()
{
 if (Thread.CurrentPrincipal.Identity != null)
 {
 return Thread.CurrentPrincipal.Identity.Name;
 }
 else
 {
 return string.Empty;
 }
}

Usable Data Types Within UDFs
The .NET Framework contains many different data types, and any of these types can be
used as a parameter or return value for a method. However, as you may imagine, Excel
doesn’t necessarily know how to process each and every data type and can therefore use
only a small subset of the types available. General speaking, only types defined in the
System namespace are supported, such as String, Boolean, DateTime, and Object.
Exceptions to this rule are Int64 and UInt64, which are not supported.

As well as passing simple values, contiguous ranges can also be passed into a UDF as
one- or two-dimensional object arrays. For example, the following two functions accept a
single row and a range of cells, respectively:

[UdfMethod]
public int ProcessSingleRow(object[] row)
{
 return row.Length;
}

[UdfMethod]
public int ProcessRange(object[,] range)
{
 return range.Length;
}

Creating a UDF Using Visual Studio 2010
For most of our code samples throughout this book, we’ve made use of the SharePoint 2010
templates that are available in Visual Studio. Since a UDF is simply a managed assembly, we
can create it using a basic class library project. We can then configure SharePoint to pick up
the assembly from the file system whenever it is required by a workbook.

 1. Open Visual Studio 2010. Choose File | New | Project.

290 PART III Application Services

 2. Create a new Class Library project and name it SampleFunctions, as illustrated:

 3. Rename Class1.cs to CurrencyConvertor.cs.

 4. As mentioned, this UDF will make a web service call to obtain a current exchange
rate. Before we add the code for the UDF function, we need to add a reference to
the web service. Choose Project | Add Service Reference.

 5. The Add Service Reference wizard is used to create WCF service references. Generally
speaking, this wouldn’t cause any problems. However, the web service to which we’re
connecting makes use of the ISO-8859-1 encoding standard, and unfortunately the
binding types provided with WCF don’t support this standard. Rather than writing a
load of code to support the standard in WCF, we’ll work around the problem by
creating a .NET 2.0 Web Reference instead. Click the Advanced button in the Add
Service Reference dialog and then in the Service Reference Settings page, click the
Add Web Reference button.

 6. In the Add Web Reference dialog’s URL text box, enter http://xurrency.com/

api.wsdl.

 7. Type XurrencySoap in the Web Reference Name text box, as shown, and then click
Add Reference to generate a proxy for the web service.

http://xurrency.com/api.wsdl
http://xurrency.com/api.wsdl

Chapter 12 Excel Services 291

P
a

rt
 I

II

 8. Before we can add our UDF method, we need to add a reference to the Excel
Services UDF Framework. Choose Project | Add Reference. In the .NET tab, select
Excel Services UDF Framework. Click OK to add the reference.

 9. We’re now ready to add some code to our CurrencyConvertor class. In the
CurrencyConvertor.cs file, add the following code:

using System;
using Microsoft.Office.Excel.Server.Udf;

namespace SampleFunctions
{
 [UdfClass]
 public class CurrencyConvertor
 {

 [UdfMethod(IsVolatile = false, ReturnsPersonalInformation = true)]
 public double GetExchangeRate(string currencyCode)
 {
 XurrencySoap.xurrency client = new XurrencySoap.xurrency();
 client.Url = "http://xurrency.com/servidor_soap.php";
 return client.getValue(1, "usd", currencyCode.ToLower());
 }
 }
}

292 PART III Application Services

 Notice a few things about this short code sample. First, the CurrencyConvertor
class is marked as public and has the UdfClass attribute attached. Second, the
GetExchangeRate method is also marked as public and has the UdfMethod
attribute attached.

Within the GetExchangeRate method, we create an instance of the XurrencySoap web
service proxy class, and then we use the proxy to call the getValue method. Since getValue
actually performs a currency conversion rather than simply providing the exchange rate,
we’ve specified via our parameters that the method should return the value of $1 when
converted into whatever currency code is passed into the function.

Configuring UDFs for Development
We’ve created a simple UDF using Visual Studio. We can now build the project and then
move on to make the necessary configuration changes within SharePoint. As discussed
earlier, configuration of Excel Services is done via the Central Administration tool.

 1. Open Central Administration and then select Manage Service Applications in the
Application Management section.

 2. Select Excel Services from the list of application either by clicking the Excel
Services hyperlink or by highlighting the Excel Services row and then clicking
Manage from the Service Applications menu.

 3. We can configure UDF assemblies by clicking the User Defined Function
Assemblies link on the Manage Excel Services page.

When it comes to adding UDF assemblies, we have two options. We can either place the
assembly in the GAC or we can access it directly from the file system. For development
purposes, reading the assembly from the file system is easiest since we can simply build the
project on our development machine and the new assembly will be immediately available to
SharePoint without us having to take any additional steps. However, bear in mind that reading
assemblies directly from the file system represents a significant security risk. It’s a trivial task
to tamper with the assembly and have it perform all kinds of nefarious acts under the security
context of any unfortunate Excel user who happens to open a workbook that references the
function. It is therefore best practice to sign all UDFs on production servers and deploy them
to the GAC.

Let’s look at how we’d configure an assembly to be picked up from the file system and
how we can debug UDFs.

 1. Click the Add User-Defined Function Assembly link.

 2. Select File Path as the Assembly Location.

 3. In the Assembly text box, enter the path to the assembly. In our case, we’ll enter C:\

Code\Chapter12\SampleFunctions\SampleFunctions\bin\Debug\SampleFunctions.dll.

 4. Click OK to add the assembly. The User-Defined Functions page will look as
illustrated:

Chapter 12 Excel Services 293

P
a

rt
 I

II

Using UDFs Within Excel
We can now make use of our custom function in our Excel workbook.

 1. If it’s not already open, in our sample site, navigate to the Excel Workbooks
document library and open the Last30DaysSales workbook using the Excel client
application.

 2. Switch to Sheet2, and in the cell B1, enter the following formula:

=IFERROR(GetExchangeRate(CurrencyCode),1)

 This formula simply calls our UDF GetExchangeRate and passes in the value of
the CurrencyCode named range. The call to our UDF is wrapped in an IFERROR
function so that data is still rendered on the client if an error occurs. Where an
error occurs, we’ve used an exchange rate of 1, which will effectively generate
charts and PivotTables based on the raw data as opposed to a pile of #NAME? or
#VALUE? errors. Note that UDFs are not accessible within Excel client and will
always display a #NAME? error.

 3. Commit the changes to SharePoint by clicking the Save button in the upper-left
corner. We can use the Save button in this instance because the underlying
metadata hasn’t changed. We don’t need to use the Publish to Excel Services
function that we used previously.

Using the REST API to Test a UDF
As it stands, we don’t have a user interface to switch between currency codes, but we can
check that our UDF is working properly by using the REST API. In a web browser, enter
the following URL:

http://localhost/Chapter12/_vti_bin/ExcelRest.aspx/Excel%20Workbooks/
Last30DaysSales.xlsx/model/Ranges(‘ExchangeRate’)?Ranges(‘CurrencyCode’)=AUD

This URL is using the REST API to return the contents of the ExchangeRate named range
when the CurrencyCode named range contains the value AUD. In other words, we’re using
the REST API to display the exchange rate between USD and AUD. The resulting output
should be a number similar to 1.15, depending on the actual exchange rate at the time you
call the API.

294 PART III Application Services

If the number 1 is returned, this indicates that you’ve either set the CurrencyCode
to USD (or left it blank) or an error has occurred. The value of 1 is returned because we
wrapped our UDF call in an IFERROR function within Excel.

Debugging UDFs
Debugging UDFs is not quite as simple as debugging other SharePoint artifacts. The UDF
is called by the Excel Services service application, which runs as a separate process. Bearing
this in mind, we have two options: we can either attach our debugger to all instances of the
w3wp.exe process, or we can find out which process is being used to run service
applications on our server.

Discovering the ProcessID Used to Run a UDF
Even though most of us will take the lazy option of attaching to all worker processes, here’s
how we can find out the correct Process ID.

As mentioned, Excel Services runs under a separate process. All service applications
running on a server are published under the SharePoint Web Services application in
Internet Information Server 7.0 (IIS7) and run within a specific application pool. Knowing
the name of this application pool is important when we’re working with UDFs since we may
need to recycle it to free up locked assemblies.

 1. In IIS Manager, navigate to the SharePoint Web Services site, expand the root
node, and select the first service application.

 2. From the Actions pane,
select Advanced Settings.
In the General section,
the name of the
Application Pool appears:

 3. Armed with the name
of the application pool,
we can now do a bit of
digging to discover
the Process ID. Open
a command prompt
and navigate to the
C:\Windows\System32\
inetsrv folder.

 4. Enter the following
command to list all the
worker processes that
are being used by IIS:

appcmd list wp

Chapter 12 Excel Services 295

P
a

rt
 I

II

 The returned list will be formatted as follows:

WP "7260" (applicationPool:SharePoint - 80)
WP "7444" (applicationPool:SharePoint Central Administration v4)
WP "4556" (applicationPool:1c549b9ed5ad4dac8e977df6da3c733b)
WP "4428" (applicationPool:ae7c416ce0ac4df7a2cfa46b8fa7327c)

 The first column, WP, identifies the type of record—in our case worker process.
The second column contains the process ID, and the last column contains the
application pool that is using the process. By finding the process that corresponds
to our SharePoint Web Services application pool, we can determine the process ID.

Note that the process ID may change between debugging sessions, but the application
pool name will remain constant unless SharePoint is reinstalled.

Manually Attaching the Visual Studio 2010 Debugger
Now let’s manually attach the Visual Studio Debugger and recycle the SharePoint Web
Services application pool.

 1. In Visual Studio 2010, choose Debug | Attach to Process.

 2. Select the w3wp.exe process with the correct ID value, and then click Attach.

 3. Add a breakpoint within the UDF function. Execution will stop on the breakpoint,
allowing debugging to take place.

You’ve seen how to debug UDFs using Visual Studio; now let’s step into our UDF code.
What happens if we need to make changes to our code and recompile our assembly? You’d
think it would simply be a case of clicking the Build button, but unfortunately it’s not quite
that straightforward if we’ve configured SharePoint to pick up the UDF from our bin
folder. The Excel Services service application will maintain a lock on the file while it’s in
use, making it impossible for Visual Studio to overwrite when compiling a new version.
Thankfully, this is an easy problem to fix. All we need to do is recycle the SharePoint Web
Services application pool and the lock will be released. This can be done using IIS or using
the command line by entering the following:

appcmd recycle apppool /apppool.name:<the name of the app pool>

Configuring UDFs for Production
You’ve already learned the two ways for SharePoint to reference UDF assemblies: either
directly via file path or indirectly via the Global Assembly Cache. I covered the steps
required to reference an assembly via a file path in a development environment and the
steps required to debug UDF assemblies.

Now that development of our UDF is complete, let’s take a look at the steps required to
reference our assembly via the GAC:

 1. Within Visual Studio, right-click the SampleFunctions node in the SolutionExplorer
pane. Select Properties from the context menu.

 2. In the Solution Properties Designer, click the Signing tab and check the Sign The
Assembly checkbox.

296 PART III Application Services

 3. From the Choose A Strong Name Key File drop-down, select <New…> to create a
new Strong Name Key.

 4. Now that we’ve specified that the assembly should be signed, we must recompile it
before the signature is applied. Choose Build | Build SampleFunctions.

 5. Now copy our assembly to the C:\Windows\Assembly folder to register it with the
Global Assembly Cache.

 6. Switch over to the SharePoint 2010 Central Admin site, where we’ll change the
UDF configuration within the Manage Excel Services page. Delete the previous
development entry for SampleFunctions.dll.

 7. Click Add User-Defined Function Assembly. Set the Assembly Location to Global
Assembly Cache.

 8. To find the strong name for our assembly, switch back to Visual Studio 2010. Either
press ctrl-alt-a or choose View | Other Windows | Command Window to display
the Visual Studio Command Window.

 9. In the command window, enter the following command:

? typeof(SampleFunctions.CurrencyConvertor).Assembly.FullName

 The resulting output will be the strong name for our assembly:

SampleFunctions, Version=1.0.0.0, Culture=neutral,
PublicKeyToken=your-token-here

 10. Copy this value into the Assembly text box on our Add User-Defined Function
Assembly page, as shown:

 11. Click OK to register the assembly and then recycle the SharePoint Web Services
application pool to pick up the new reference.

We can now test using the REST API URL that we created earlier to confirm that our
assembly is being correctly picked up from the GAC.

Chapter 12 Excel Services 297

P
a

rt
 I

II

Using the JavaScript Object Model
We’ve almost met the requirements of our demonstration scenario. The only item missing
is a user-interface element that can be used to switch currencies. Let’s move on and take a
look at how we can implement this functionality using the JavaScript Object Model (JSOM).

A Whirlwind Tour of Excel JSOM
Before we jump into adding script to the page, let’s look at the objects that are exposed via
JSOM and the mechanism for connecting to EWA web parts.

EwaControl
The EwaControl is the entry point to the object model and represents an EWA web part.
As well as representing a specific instance of an EWA web part, the EwaControl has a static
getInstances method that can be used to retrieve a collection of the EWA web parts on a
page. For example, the following code snippet returns an EwaControl object that represents
the first EWA web part on a page:

var myEwa = Ewa.EwaControl.getInstances().getItem(0);

As well as the methods mentioned, all events exposed by JSOM are defined on the
EwaControl object. These include events such as activeCellChanged, gridSynchronized,
and workbookChanged.

Event-handling delegates can be hooked up using JavaScript code similar to this snippet:

var myEwa;
_spBodyOnLoadFunctionNames.push("EwaPageLoad");
function EwaPageLoad() {
 Ewa.EwaControl.add_applicationReady(GetEwa);
}
function GetEwa(){
 myEwa = Ewa.EwaControl.getInstances().getItem(0);
 if(myEwa)
 {
 myEwa.add_activeSelectionChanged(activeSelectionChangedHandler);
 }
}

Workbook
The Workbook object represents an Excel workbook. A reference to the workbook used by
a particular EwaControl can be retrieved using the following code:

var myWorkbook = myEwa.getActiveWorkbook();

The Workbook object provides a number of methods that can be used to retrieve
particular ranges, worksheets, or named ranges. As well as these methods, refreshing the
underlying data of a workbook can be performed by calling the refreshAllAsync method.
Note that to refresh a workbook, the referenced EWA web part must have the Refresh
Selected Connection, Refresh All Connections option checked.

298 PART III Application Services

Range
The Range object represents one or more cells. The most common use of the Range object
is to get or set particular values within a workbook. The following code snippet sets the
value of the first cell in a workbook:

var theRange = myWorkbook.getRange("A1", 1, 1, 1, 1);
theRange.setValuesAsync(values, myCallBack, null);

Notice a few things about this snippet. First, when calling setValuesAsync, the values
property must contain a two-dimensional array of cell values. Second, all interactions with
the Excel workbook are performed asynchronously. This makes sense when you think about
it, since the workbook is actually being processed on the server and is being accessed via
Asynchronous JavaScript and XML (AJAX).

Sheet
The Sheet object represents a single worksheet within a workbook. References to specific
sheets can be obtained using the getSheets method of the Workbook object, which will
return a SheetCollection object, or using the getActiveSheet method of the Workbook
object, which will return a reference to the currently active sheet.

NamedItem
The NamedItem object represents a named range. For all practical purposes, the NamedItem
object is useful only for selecting a particular named range via the activateAsync method.
When it comes down to reading data from a named range or writing data to a named
range, both of these actions must be performed using a Range object. For example, this
code snippet reads values from a named range:

function someFunction()
{
 var myEwa = Ewa.EwaControl.getInstances().getItem(0);
 var myWorkbook = myEwa.getActiveWorkbook();
 var theRange = myWorkbook.getRange("MyNamedRange", 1, 1, 1, 1);
 var values = theRange.getValuesAsync(Ewa.ValuesFormat.Formatted, getCallBack,
null);
}
function getCallBack(returnValues) {
 window.status = returnValues.getReturnValue();
}

Adding a Content Editor Web Part Containing JavaScript
To make our demonstration focus on the specifics of communicating with Excel via JSOM,
our user interface will consist of a simple drop-down list of currencies. We can include
JavaScript on a web part page in a few ways. One is to modify the page using SharePoint
Designer and physically insert the script into the page. Another method, and the one that
we’ll use for our demonstration, is to add a Content Editor web part that uses a link to a
text file containing the appropriate script.

When I covered the JSOM earlier, I mentioned that it works by leveraging a collection
of JavaScript objects provided by one or more Excel Web Access web parts. As a result of
this, we can access the Excel JavaScript API only on pages containing at least on EWA web
part. We’ll make use of this functionality on the home page of our sample site.

Chapter 12 Excel Services 299

P
a

rt
 I

II

 1. Navigate to http://localhost/Chapter12/Default.aspx, and choose Site Actions |
Edit Page.

 2. In the Left web part zone, click Add a Web Part and then select the Content Editor
web part from the Media and Content category.

 3. Select the Content Editor web part by clicking the header; then, from the Options
menu, select Web Part Properties. In the Content Link text box, enter this: http://

localhost/Chapter12/Excel%20Workbooks/JSOM.content.txt.

 4. Click OK to save the changes to the web part properties. Then click Stop Editing
from the Page menu to return to View mode.

Creating JSOM Content in an External File
We’ve configured our content editor web part to read its contents from an external file;
we’ll now move on to create a file containing the appropriate JSOM content. Note that we
could enter the JavaScript directly into the Content Editor web part, but using an external
file makes debugging and editing easier.

 1. Open Notepad.exe and enter the following text in a new document:

<select id="Select1" onchange="UpdateChart(this)">
 <option value="ARS">Argentine Peso</option>
 <option value="AUD">Australian Dollar</option>
 <option value="GBP">British Pound</option>
 <option value=vJPY">Japanese Yen</option>
 <option value="EUR">Euro</option>
 <option value="USD" selected="selected">US Dollar</option>
</select>
<script type="text/javascript">
 var myEwa;
 _spBodyOnLoadFunctionNames.push("EwaPageLoad");

 function EwaPageLoad()
 {
 Ewa.EwaControl.add_applicationReady(GetEwa);
 }

 function GetEwa()
 {
 myEwa = Ewa.EwaControl.getInstances().getItem(0);
 }

 function UpdateChart(sender)
 {
 if (myEwa) {
 var values = new Array();
 values[0] = sender.value;

 var values2 = new Array();
 values2[0] = values;

 var currencyCode=myEwa.getActiveWorkbook().getRange("CurrencyCode", 1, 1,
values.length, 1);
 currencyCode.setValuesAsync(values2, setCallBack, null);
 }

300 PART III Application Services

 else
 {
 window.status = 'Excel Web Access not ready';
 }
 }

 function setCallBack(returnValues) {
 myEwa.getActiveWorkbook().refreshAllAsync(refreshCallback,null);
 }

 function refreshCallback(returnValues) {
 window.status = 'Sales chart has been refreshed';
 }

</script>

 2. Save the file as JSOM.Content.txt to \\localhost\Chapter12\Excel Workbooks.

We can now refresh our home page to see the fruits of our labor. We can select a
currency from the drop-down list and our chart will be recalculated using that currency,
as shown next:

As you can see, when we try to select a new currency, however, things are not quite as
simple as we’d hoped. For example, if we switch the currency to Japanese Yen, we see an
Excel Web Access error telling us “A Setting on Excel Services does not allow the requested
operation to be performed.” Errors of this type can happen quite often when using JSOM,
and the reason comes back to what I said at the beginning of this section: JSOM works by
using a set of objects that are exposed by an Excel Web Access web part. Although the error
suggests that an Excel Services setting is responsible for our problem, more often than not
it’s a property setting on the EWA web part that we’re referencing in script. In our case, the
problem is that we’re trying to set the value of the CurrencyCode named range but the
Interactivity Settings for the EWA web part don’t allow Typing and Formula Entry. Switch to
Edit mode and modify the properties of the EWA web part to resolve this issue. Our home
page will now behave as expected.

Using Data Connection Libraries
We’ve managed to meet the requirements of our demonstration scenario and conveniently
in the process have touched upon all the major features of Excel Services. Although our
demonstration site works as required, in a real-world environment, we’d need to consider

Chapter 12 Excel Services 301

P
a

rt
 I

II

a few other aspects, particularly those with regard to how data connection information is
stored and used.

Our sample workbook includes an embedded data connection that has been configured
to use the credentials of the currently logged-in user. This approach has a few drawbacks,
however. First, all users of the web site must also be granted permissions to access the data
source referred to by the workbook. Second, anybody with permissions to edit the workbook
can make changes to the data connection, possibly creating a connection to a server that’s
not generally accessible. In such a case, the generated workbook would display just fine for
users with appropriate permissions on the data source but would display an error message
for other users. As well as creating connections to restricted servers, a user might also be
able to create a connection that returned an unnecessarily large volume of data. For example,
a user could read every single sales transaction record from an ERP system into a pivot table
and then summarize the total sales data by quarter. While this would deliver the required
end result, the performance implications of using such a Workbook in Excel Services are
considerable.

To resolve these issues, you can restrict data connection availability to specific data
connection libraries. Permissions can be set on the libraries so that only authorized users
can create connections. This provides a much higher degree of control over what data
sources can be used, how authentication is handled, and how queries are written.
Furthermore, it allows users who are not familiar with the nuances of connecting to
database servers and retrieving data to create useful Excel workbooks simply by selecting
the appropriate data source from a list.

Restricting Data Connection Types
Let’s start by denying our embedded connection the rights to run under Excel Services:

 1. Using SharePoint 2010 Central Administration, select Manage Service Applications
from the Application Management section.

 2. Select the appropriate Excel Web Service Application instance from the list of
available services.

 3. In the Trusted File Locations section, add a new location specifically for our sample
site. This will allow us to override the default settings for our sample site without
affecting the settings for other sites that use our Excel Services instance. Click the
Add Trusted File Location link.

 4. In the Location section, type the Address as http://<your server name>/Chapter12
and then check the Children Trusted checkbox. Notice that we’re using the physical
server name rather than localhost because Excel Services configuration uses the
URL that was assigned to an application when it was first created. Although we’ve
accessed our sample site using the URL http://localhost/Chapter12, this URL isn’t
configured within SharePoint and therefore can’t be used as a SharePoint trusted
file location.

 5. In the External Data section, select the Trusted Data Connection Libraries Only
option for Allow External Data.

 6. Currently our workbook is set up to refresh external data content manually. As it
happens, the first time we select a currency from the drop-down list, the workbook

302 PART III Application Services

is refreshed, causing the underlying external data to be reloaded. The caching
settings within the External Data section determine how often external data is
reloaded, and the default values mean that external data is cached for a period
of 5 minutes. When we reconfigure our data connection to use a Data Connection
library, we’ll set it up to refresh automatically when the workbook is loaded. To
prevent the user from having to confirm this refresh every time the workbook is
opened, uncheck the Refresh Warning Enabled checkbox.

 7. In the User-Defined Functions section. check the User-Defined Functions Allowed
checkbox.

 8. Click OK to apply the settings.

We can now revisit our sample site home page to see the damage that we’ve done to our
application. Bearing in mind that external data is refreshed only whenever the currency
code is changed, select an alternative currency from the drop-down list to trigger a refresh.
If our configuration changes have been properly applied, we should see an error, as shown:

Excel services makes extensive use of caching, both in terms of the workbooks and the
external data that’s used within them. If the expected error is not shown, it’s most likely
because the workbook has been cached on the server. To force the configuration changes
to take immediate effect, you can recycle the SharePoint Web Services application pool
using the methods described earlier.

Adding Connections to Data Connection Libraries
Now that we’ve broken our sample application, we need to fix it again. We can do this by
adding a new data connection library and then creating an Office Data Connection (.odc)
file containing our connection settings. We’ll then tweak our workbook to use our new
connection file instead of an embedded connection.

 1. Create a new Data Connection library. From our sample site home page, click the
Documents link to view the list of document libraries. Click the Create link to show
the Create dialog.

Chapter 12 Excel Services 303

P
a

rt
 I

II

 2. From the Content & Data category, select Data Connection Library. Type the name
of the new library as Sample Data Connections, and then click the Create button.

 3. With our new library available, we need to let Excel Services know that all data
connections stored there can be trusted. Switch back to the Manage Excel Services
page in Central Administration and click the Trusted Data Connection Libraries link.

 4. Click the Add Trusted Data Connection Library to add a new library. Type the
address http://<your server name>/Chapter12/Sample%20Data%20Connections,
and then click OK to save the changes.

TIP In the real world, where trusted connection libraries are used, it makes sense to have a single central
connection library at a well-known location. Given that the purpose of the connection library is to
allow all users to access trusted business data freely, making connections to the data as easy to find
as possible is a worthwhile aim.

 5. Now we’ll create a data connection in the library and reconfigure our Excel workbook
to use that instead. Navigate to the Excel Workbooks document library in our sample
site and then edit our Last30DaysSales workbook using Excel client.

 6. From the Data menu, select the Connection button.

 7. In the Workbook Connection dialog, make sure the AdventureWorksList30DaysSales
connection is selected and then click the Properties button.

 8. While we’re changing stuff, we’ll configure our data connection to reload external
data when the file is opened. In the Usage tab, check the Refresh Data When
Opening The File checkbox.

 9. Switch to the Definition tab. Click the Export Connection File button and then in
the File Save dialog, save the connection to http://<your server name>/chapter12/
Sample Data Connections.

 10. Since we’re uploading the file to SharePoint, we’ll be prompted for some additional
metadata. Make sure that the Content Type is set to Office Data Connection File,
and then click OK to complete the upload.

 11. We can see in the Connection Properties dialog that the Connection file path has
changed to our data connection library. Even though we’ve saved the connection
details to our SharePoint server, Excel still uses an embedded copy of the connection
details. To force a reload every time the connection is used, check the Always Use
Connection File checkbox.

 12. Click OK to close the Connection Properties dialog, and then click Close to return
to Excel. We can now save our revised workbook back to SharePoint by clicking the
Save icon in the upper-left corner.

When we return to the home page of our sample site, we’ll find that our chart now
functions properly. If an error is still being displayed, try recycling the application pool
to clear out any cached copies of the workbook.

304 PART III Application Services

Connecting to Data Using Alternative Credentials
One of the reasons for creating a central library of trusted data connections is to allow
administrators to identify specific user credentials for each connection rather than using
the Windows credentials of the calling user. So far, our connection is still set up to use
Windows authentication, so let’s take a quick look at how we can change this to use specific
credentials.

 1. Before we can change our connection to use specific credentials, we need to set up
the credentials in question. Create a new local user account named testuser, and
give this account read-only access to our sample database.

 2. Within SQL Server Management Studio, add a new Login for our testuser account.
This can be achieved by expanding the Security node, right-clicking the Logins
node, and then selecting New Login from the context menu.

 3. In the Login - New dialog, enter details of our testuser account in the Login Name
textbox. Type the default database as AdventureWorks.

 4. Switch to the User Mapping page and map our account to the db_datareader role
for the AdventureWorks database, as shown:

 5. Click OK to complete the process.

Chapter 12 Excel Services 305

P
a

rt
 I

II

Now that we have a created specific user account with the appropriate permissions to
our database, we can look at how these permissions can be used within Excel Services.
Three possibilities exist for using specific credentials within Excel Services:

Embedded in Connection String We could embed credentials in the connection
string that we used when creating the data connection. This has an obvious drawback in
that the username and password are freely visible to anybody with access to view the data
connection. Furthermore, this won’t allow us to use a specific Windows user account.

No Credentials This option isn’t as crazy as it sounds. When a data connection is created
and the authentication type is set to None, Excel Services uses default credentials to connect.
This account is known as an “unattended service account" and is configured using the
Secure Store Service.

Secure Store Service Account The Secure Store Service provides a secure mapping of
user credentials between systems. We can make use of this service within Excel Services to
retrieve securely stored connection credentials. The difference between explicitly using the
Secure Store Service and using it indirectly via the Unattended Service account is that the
Unattended Service account is configured globally for the entire Excel Services application.
However, when we’re explicitly using the Secure Store Service, we can specify which
application ID should be used for each connection.

Configuring the Secure Store Service
Since two of our three options make use of the Secure Store Service, let’s look at how to set
it up:

 1. Within SharePoint Central Administration, select Manage Service Applications
from the Application Management section.

 2. From the List of Service Applications, select the Secure Store Service Application
and then, from the Service Applications menu, click Manage.

 3. If this is the first time the Secure Store Service has been used, we need to initialize
it by clicking the Generate New Key button in the Key Management section of the
Edit menu.

Once the service has been initialized with a key, we can add a new application for use
with our Excel Services external data store. Before we move on to take this step, however,
I’ll clarify what an application is and how it works within the Secure Store Service. An
application is similar to an Excel worksheet: along the top of the worksheet are columns
that relate to the properties that are defined by the application. These might include things
like Username and Password but can include practically any content. Each row represents a
mapping for a particular user account or group of users. For each mapping, values are
stored in the respective columns. When a request is made to the Secure Store Service,
the request will contain details of the application, and using this together with the
SharePoint user credentials, the appropriate row will be selected and returned.

Now let’s add a new application for Excel Services:

 1. In the Manage Target Applications section, click the New button.

306 PART III Application Services

 2. In the Target Application Settings page, enter the Target Application ID as
ExcelServicesUnattendedAccount.

 3. Set the Display Name to the same name as the Target Application ID, and add an
appropriate e-mail address in the Contact E-Mail text box.

 4. Various Target Applications Types are available when we’re creating applications,
but these can be split into two broad categories: Individual and Group. Individual
types create a one-to-one mapping between a SharePoint user and a set of
properties, or to refer back to our earlier analogy, each row in our workbook
represents only one SharePoint user. Group types, on the other hand, create a
many-to-one mapping. Effectively, our workbook has only one row, which can be
mapped to any number of SharePoint user accounts or groups.

 5. For our Excel Services application, we’ll create a Group application, and this will
allow us to map all users to a single set of credentials. Click Next to proceed to the
next step of the process.

 6. Specify which field will be used by our application. To refer to our earlier analogy,
each field is a column in our worksheet. For our purposes, the default fields—Windows
User Name and Windows Password—are sufficient. Click Next to move on.

 7. Now specify which accounts have administrative permissions for this application.
Enter an appropriate username in the Target Application Administrators picker.
As well as specifying administrative users, we also need to specify which users and
groups will use the credentials that are mapped to our application. In this case, we
want everybody to use the same credentials, so we’ll specify All Users (windows).
Click OK to finish creating our application.

 8. To set credentials for our application, we must select the application by clicking the
checkbox next to it and then click the Set button in the Credentials section of the
ribbon, as shown:

 9. Enter details of the testuser account that we created earlier, remembering to prefix
the username with the local computer name (that is, yourcomputer\testuser). Click OK
to store the credentials.

Chapter 12 Excel Services 307

P
a

rt
 I

II

NOTE Although we’ve created a group application for use with our Unattended Service account, we
could also have created an Individual application and mapped the Windows username of the Excel
Services service account to our testuser account. The drawback in doing this, however, is that if the
service account changes, somebody must remember to add the new service account manually to the
application. However, this approach does benefit from being more secure since only an appropriately
configured account can use our testuser credentials. Our Group application allows our testuser
account to be used by any Windows account.

Now that we’ve set up our Secure Store Service application, we can take the final step
necessary to use it as our Unattended Service Account within Excel Services.

 1. Navigate to the Manage Excel Services page within Central Administration. Click
the Global Settings link.

 2. Scroll down to the External Data section, and in the Application ID text box, enter
the ID for our Secure Store Service application—in our case, type
ExcelServicesUnattendedAccount. Click OK to commit the configuration changes.

Before we can see our unattended service account in action, we need to reconfigure
our data connection to use no authentication:

 1. Browse to the Sample Data Connections library of our sample site and then,
from the context menu, edit the AdventureWorksList30DaysSales connection
file using Excel.

 2. The Excel client application is opened automatically. In the Security Notice dialog,
click Enable to allow our data connection to execute. A table of data from our
external data source will be displayed. This data is just for reference purposes; it
effectively allows us to see what our data connection will return when executed.

 3. To modify the data connection properties, from the Data menu click Properties,
and then in the External Data Properties dialog, select the icon to the right of the
Name text box, as shown:

308 PART III Application Services

 4. We’ll be presented with the familiar Connection Properties dialog that we used
earlier when creating our workbook. Switch to the Definition tab, and then click
the Authentication Settings button.

 5. Set the authentication type to None, and then click OK to close the dialog.

 6. As we did when we modified the connection, click Export Connection File to save
the changes back to our data connection library.

 7. After the connection has been exported, click OK to close the dialog, and then
close Excel. Discard the workbook that was automatically created.

We’re now ready to return to our sample site home page to confirm that our data is still
being refreshed properly. We can use SQL Server Profiler to confirm that connections to
the database are now being made using our testuser account.

You’ve learned how to set up an Unattended Service account using the Secure Store
Service. To use a specific application ID, the process is practically identical. The only
difference is that in the Connection Properties dialog, rather than specifying the
authentication type as None, the type is set to SSS and the application ID is entered.

Summary
In this chapter, you’ve seen how Excel Services allows you to leverage the power of Excel
within a web-based environment. Creating powerful data visualization solutions is now
achievable for users who have little or no development skills. Furthermore, the powerful
calculation engine that is Excel can be used by skilled developers to address practically any
business specific problem. The key to bear in mind as application developers is this: If we
need even basic data visualization or calculation facilities, the amount of work involved in
creating a tool with even 10 percent of the flexibility of Excel Services is considerable. By
leveraging Excel Services on SharePoint Server 2010, we give our users a lot more bang for
their buck, and we can focus on the aspects of our application that are completely custom made.

Data Access Layer

PART

IV
CHAPTER 13
Data Access Overview

CHAPTER 14
LINQ to SharePoint
and SPMetal

CHAPTER 15
Business Connectivity
Services

CHAPTER 16
Enterprise Search

CHAPTER 17
User Profi les
and Social Data

CHAPTER 18
Business Intelligence

This page intentionally left blank

13
CHAPTER

311

Data Access Overview

More often than not, when it comes to designing a data access layer for a custom application,
your only consideration is how the layer can be accessed and used programmatically. You
don’t usually need to consider how a nontechnical user might configure and amend the data
structure. Naturally, this makes life much simpler for the designer, because the data structure
can be designed with only the application goals in mind. The exception to this rule occurs,
of course, when the application itself is a configurable data store; in that case, the primary
aim is to create a user-configurable data access layer. SharePoint is such an application, as a
web-based platform for storing and sharing data and applications that allows nontechnical
users to create data structures that meet their unique requirements.

This part of the book covers the various data access features available in SharePoint
2010. However, before we delve into these advanced features in detail, we’ll look at how
data is stored and managed in the underlying platform. Given that the target audience for
the data access platform is the nontechnical end user, from a development perspective, we
have something of a learning curve to undergo before we can effectively make use of the
platform to implement the structures required by our custom applications.

This chapter aims to cover the fundamental building blocks of the data access features
available on the SharePoint platform, to help create a strong foundation for the advanced
features that are discussed later in the book.

Content Types
The aim of the SharePoint data access platform, and indeed of SharePoint itself, is to
provide a web-based tool that can be easily customized by end users to store any business
data, either in raw database-style by using custom lists or embedded in documents by using
document libraries and features such as Excel Services. At the fundamental level, both of
these approaches have a common implementation in the form of content types. Basically, a
content type is a metadata definition of a particular type of content.

312 PART IV Data Access Layer

Content Type Inheritance
One important feature of content types is inheritance. In SharePoint, all content types
inherit properties from the System content type, and when users create new content types,
they must select an appropriate parent content type from which to inherit.

You can see from the hierarchy shown in Figure 13-1 that custom list data can be stored
by creating a content type that inherits from the Item content type whereas documents can
be stored by using the appropriate Document content type or by creating a new content
type that inherits from Document.

Content Type Identifiers
One thing that may be apparent from Figure 13-1 is the use of concatenated unique
identifiers for each content type. For example, the identifier for the Master Page content
is type is 0x010105, which is shown in Figure 13-2.

Although from a development perspective, the use of concatenated identifiers may
seem a bit archaic and prone to data entry errors, there is a very good reason for taking this
approach as opposed to the more traditional technique of assigning automatically generated
sequential identifiers. Practically all of the functionality of the SharePoint platform is
defined at the content type level. For example, a web page containing web parts is based on
the Web Part Page content type. It is the use of this content type that provides the necessary
data structure required to store the properties of the web parts that are stored on the page.
However, the Web Part Page content type is also based on the Basic Page content type, and
it is via this inheritance that a physical representation of the page can be rendered from the
database.

Figure 13-1 The System content type hierarchy in SharePoint 2010

Folder
0x0120

Announcement
0x0104

Document
Collection Folder

0x0120D5

Discussion
0x012002

Summary Task
0x012004

Form
0x010101

Document
0x0101

Master Page
0x010105

Event
0x0102

Basic Page
0x010109

Web Part Page
0x01010901

System
0x

Contact
0x0106

Message
0x0107

Task
0x0108

Workflow Task
0x010801

Administrative Task
0x010802

Workflow History
0x0109

Post
0x0110

Item
0x01

Chapter 13 Data Access Overview 313

P
a

rt
 I

V

System

Item

Document

Master Page

0 x 0 1 0 1 0 5

Figure 13-2 Breakdown of content type identifi er for Master Page content type

Since functionality is effectively layered based on the content type hierarchy, being able
to navigate up and down the structure efficiently is key to the overall performance of the
system. By using concatenated identifiers, system code can easily derive the hierarchy without
having to resort to database lookups or other methods.

Generating Content Type Identifiers
When programmatically creating content types, you can use two approaches to generating
content type identifiers. The first approach, which is used by out-of-the-box content types, is
to use this:

Parent content type ID + 2 hexadecimal digits (other than 00, because this is reserved
for use by the second method)

For example, if we wanted to create a new content type derived from Master Page, we could
use the following identifier:

System

Item

Document

Master Page

0 x 0 1 0 1 0 5

MyCustomContentType

1 A

The second approach, which is recommended when creating a content type that
inherits from a parent that you didn’t create, is to use this:

Parent content type ID + 00 + hexadecimal GUID

314 PART IV Data Access Layer

Using the preceding example of a content type derived from Master Page, we could use the
following identifier:

System

Item

Document

Master Page

0 x 0 1 0 1 0 5

MyCustomContentType

C E D B 1 2 9 2 8 0 A 4 3 F F 9 A 6 E A 6 E 6 F 9 2 8 D 9 4 7 B00

Separator

The SPContentTypeId Object
To make parsing of content type identifiers easier in code, the SharePoint object model
includes the SPContentTypeId class. The SPContentTypeId class makes it easy to perform
various actions against content types, such as determining the parent content type identifier
or finding a common parent of two identifiers.

The following code listing shows how to create a content type programmatically with a
user-defined identifier as well as with a system-defined identifier. You can see that system-
defined identifiers always adopt the lengthier GUID concatenation approach.

 static void Main(string[] args)
 {
 string siteUrl = "http://localhost";
 Program p = new Program();
 using (SPSite site = new SPSite(siteUrl))
 {
 using (SPWeb web = site.OpenWeb())
 {
 Console.WriteLine("{0} | {1} | {2}","Name".PadRight(20),
 "ContentTypeId".PadRight(40),
 "Parent Name".PadRight(10));
 Console.WriteLine(new string(‘-’, 78));
 SPContentType newContentType;
 newContentType=p.CreateContentType(web, "MyFirstContentType", "Item");

 Console.WriteLine("{0} | {1} | {2}", newContentType.Name.PadRight(20),
 newContentType.Id.ToString().PadRight(40),
 newContentType.Parent.Name.PadRight(10));

 SPContentTypeId newId = new SPContentTypeId("0x01AB");
 newContentType=p.CreateContentType(web, newId, "MySecondContentType");

 Console.WriteLine("{0} | {1} | {2}", newContentType.Name.PadRight(20),
 newContentType.Id.ToString().PadRight(40),
 newContentType.Parent.Name.PadRight(10));
 }
 }
 Console.ReadLine();
 }

Chapter 13 Data Access Overview 315

P
a

rt
 I

V

 SPContentType CreateContentType(SPWeb web, string name, string parentName)
 {
 if (web.AvailableContentTypes[name] == null)
 {
 SPContentType parent = web.AvailableContentTypes[parentName];
 SPContentType contentType = new SPContentType(parent,
 web.ContentTypes,
 name);

 //To save this new content type, update must be called
 //contentType.Update();

 return contentType;
 }
 else
 {
 return web.AvailableContentTypes[name];
 }
 }

 SPContentType CreateContentType(SPWeb web, SPContentTypeId newId,string name)
 {
 if (web.AvailableContentTypes[newId] == null)
 {
 SPContentType contentType = new SPContentType(newId,
 web.ContentTypes,
 name);
 //To save this new content type, update must be called
 //contentType.Update();
 return contentType;
 }
 else
 {
 return web.AvailableContentTypes[newId];
 }
 }

Generally speaking, performing such actions using code would be required only as part
of the initial setup of a site or site collection. We’ll look at this in more detail in Chapter 19.

Content Type Groups
Although all content types are fundamentally derived from the System content type and
exist as part of a well-defined hierarchy, for ease of reference, content types can also be
grouped. Grouping is purely a metadata activity and has no bearing on content type
inheritance. That said, some groups serve specific purposes within the SharePoint platform,
and one example is the _Hidden group. Content types belonging to this group are not
displayed in the user interface.

Another thing to bear in mind when using content types is the way in which folders
and content hierarchy are implemented. When creating a document library, you cannot
add content types that are not derived from Document. By the same token, when you’re
creating a custom list, you cannot add content types that are derived from Document.

316 PART IV Data Access Layer

Notwithstanding these rules, lists and document libraries can contain content conforming
to many different content types. For example, a document library can contain Master Pages
and Web Part Pages.

Content Type Metadata
You’ve seen how content types are organized into a hierarchy and how inheritance
determines the functionality that is enabled by a given content type. Now let’s take a look
at the type of metadata, and therefore the types of functionality, that can be exposed by
content types.

Workflow Associations
Workflows can be associated with content types and set to run in response to certain
events. By attaching workflows to content types rather than individual lists, you can define
business processes for specific types of data regardless of where the data is stored within
a SharePoint site.

Document Template
For some types of content, particularly those based on Microsoft Office documents such as
Word or Excel docs, custom templates can be specified that users can populate with relevant
details. Details of such a template can be specified as content type metadata, allowing the
template to be used wherever the content type is added to a document library.

Display, Edit, and New Forms
Each content type can define custom display, edit, and new forms allowing customization of
the user interface presented at these stages. Various options are available for customizing these
forms; however, from a content type perspective, it’s important to note that two properties exist
for each form. For example, to set the Display form, you can use a DisplayFormTemplateName
property and a DisplayFormUrl property. Which property you use depends on the level of
customization that’s required. By setting the DisplayFormTemplateName property, you can
specify a template that will be used by the DataForm Web part to render the appropriate
view. However, if a greater level of customization is required, the DisplayFormUrl can be
set to the URL for a custom Active Server Page Framework (ASPX) page, allowing a much
greater degree of flexibility with the drawback that none of the usual SharePoint user
interface elements will be present on the page by default.

Mobile Display, Edit, New Pages
SharePoint 2010 provides a number of new features for rendering content for mobile
browsers. One example of this new functionality is the ability to specify custom forms for
creating and editing content using mobile browsers at the content type level.

XML Documents
The ability to add practically any XML-based metadata to a content type is an incredibly
powerful feature. Interestingly, some of the metadata already described, although accessible
through the object model via dedicated properties, is actually attached to a content type via
additional XML documents.

New in

2010

Chapter 13 Data Access Overview 317

P
a

rt
 I

V

The following code sample shows how metadata can be added by creating a custom
class that supports XML serialization and then setting properties on the class to contain the
appropriate values. Using this technique, you can attach practically any additional data to a
content type.

 static void Main(string[] args)
 {
 string siteUrl = "http://localhost";
 Program p = new Program();
 using (SPSite site = new SPSite(siteUrl))
 {
 using (SPWeb web = site.OpenWeb())
 {
 SPContentType newContentType;
 newContentType = p.CreateContentType(web, "MyFirstContentType", "Item");
 CustomMetadata metaData = new CustomMetadata();
 metaData.MyIntegerProperty = 46;
 metaData.MyTextProperty = "Data stored as custom metadata";
 p.AddCustomMetadata(metaData, newContentType);
 metaData = null;
 metaData = p.ReadCustomMetaData(newContentType);
 Console.WriteLine(metaData.MyTextProperty);
 }
 }
 Console.ReadLine();
 }

 void AddCustomMetadata(CustomMetadata data, SPContentType contentType)
 {
 XmlSerializer s = new XmlSerializer(typeof(CustomMetadata));
 StringBuilder sb = new StringBuilder();
 using (XmlWriter writer = XmlWriter.Create(sb))
 {
 s.Serialize(writer, data);
 }
 XmlDocument doc = new XmlDocument();
 doc.LoadXml(sb.ToString());
 contentType.XmlDocuments.Add(doc);
 }

 CustomMetadata ReadCustomMetaData(SPContentType contentType)
 {
 CustomMetadata data;
 Type t = typeof(CustomMetadata);
 var attrib = (XmlRootAttribute)t.GetCustomAttributes(
 typeof(XmlRootAttribute), false).FirstOrDefault();
 if (contentType.XmlDocuments[attrib.Namespace] != null)
 {
 XmlDocument doc = new XmlDocument();
 doc.LoadXml(contentType.XmlDocuments[attrib.Namespace]);
 using (StringReader sr = new StringReader(
 contentType.XmlDocuments[attrib.Namespace]))
 {

318 PART IV Data Access Layer

 using (XmlReader rdr = XmlReader.Create(sr))
 {
 XmlSerializer s = new XmlSerializer(t);
 data = (CustomMetadata)s.Deserialize(rdr);
 }
 }
 return data;
 }
 else
 {
 throw new KeyNotFoundException();
 }
 }

 [XmlRoot(Namespace="Http://www.chaholl.com/SP2010Apps/ContentTypesDemo")]
 public class CustomMetadata
 {
 [XmlElement()]
 public int MyIntegerProperty { get; set; }
 [XmlElement()]
 public string MyTextProperty { get; set; }
 }

Enterprise Content Types
Earlier in this book, site collections and sites and the hierarchical nature of these structures
were discussed. This hierarchy also has implications for content types, because content
types are also inherited by child sites. For example, if an organization creates a site collection
named HR with a root site of Benefits, a content type named Employee defined on the
Benefits site would be available to all child sites, no matter where they sat within the
hierarchy, as shown next:

New in

2010

Chapter 13 Data Access Overview 319

P
a

rt
 I

V

This cross-site scoping is an important feature in SharePoint, because it facilitates the
creation of centrally managed data structures. However, while this inheritance works well
within site collections, it doesn’t work across site collections. From the preceding illustration,
if another site collection named Training existed with a root site of LearningCenter that
also wanted to make use of a common Employee content type, using previous versions of
SharePoint it would be necessary to create a new content type on the LearningCenter site.

SharePoint Server 2010 introduces a new feature known as enterprise content types, and it’s
aimed at providing an answer to this problem. To enable content type publishing, take the
following steps:

 1. Either create a new site collection that’s going to be the content type repository
or use an existing site collection.

 2. In the Site Settings page, select Site Collection Features and then activate the
Content Type Syndication Hub feature.

 3. Content Type syndication makes use of the Managed Metadata service application
to distribute content types between connected applications. To specify that our
newly created Content Type Hub should be used by a particular Managed Metadata
Service application, select the appropriate service from the Manage Service
Applications page in Central Administration. Click the Properties button in
the ribbon, as shown next:

320 PART IV Data Access Layer

 4. In the Create New Managed Metadata Service dialog, set the Content Type Hub
URL to the appropriate site collection, as shown:

 5. The final step in configuring content type publishing is to enable it on the
appropriate Managed Metadata Service Connection. Select the appropriate
connection, and then click the Properties button on the ribbon. Check
the Consumes Content Types From The Content Type Gallery option, as
shown next:

Chapter 13 Data Access Overview 321

P
a

rt
 I

V

Columns
You’ve seen how content types are used throughout SharePoint to determine how specific
types of data should be handled. We’ve looked at the types of metadata that can be stored
within a content type. One of the areas that we haven’t discussed so far is how individual
items of data are defined, and that’s where columns come in. Every content type contains a
reference to one or more column objects, where a column defines a specific data element
together with any appropriate metadata required to capture, process, and render it. Columns
can be reused in multiple content types, and in fact this reuse is central to the way content
type inheritance is implemented. For example, suppose the Item content type references a
column named Title. As a result, all content types that inherit from Item also contain a
reference to this Title column.

322 PART IV Data Access Layer

Columns, like content types, are available across child sites. Where the columns are
used in a content type that is published using content type publishing, the columns are
available across site collections.

One of the most important properties of a column is the type of data that it can contain.
A number of built-in options are available, and a full list can be obtained by examining the
SPFieldType enumeration in the Microsoft.SharePoint namespace. Some of the commonly
used types include the following:

Integer• Specifies that the column contains an Integer value

Text• Specifies that the column contains a single line of text

Note• Specifies that the column contains multiple lines of text

Number• Specifies that the column contains a floating point number

Lookup• Specifies that the column contains a reference to a value in another list

The following code sample shows how to create columns and associate them with
content types:

 static void Main(string[] args)
 {
 string siteUrl = "http://localhost";
 List<string> fieldNames = new List<string>();
 Program p = new Program();

 using (SPSite site = new SPSite(siteUrl))
 {
 using (SPWeb web = site.OpenWeb())
 {
 SPContentType newContentType;
 newContentType = p.CreateContentType(web,
 "MyFirstContentType",
 "Item");

 p.CreateSiteColumn(web, "MyColumn",
 SPFieldType.Text,
 false);

 fieldNames.Add("MyColumn");

 p.CreateSiteColumn(web, "MyColumn2",
 SPFieldType.Text,
 false);

 fieldNames.Add("MyColumn2");

Chapter 13 Data Access Overview 323

P
a

rt
 I

V

 p.AddFields(web, fieldNames.ToArray(), newContentType);

 Console.WriteLine("{0} | {1} | {2}", "Title".PadRight(20),
 "Type".PadRight(20),
 "Group".PadRight(20));
 Console.WriteLine(new string(‘-’, 70));

 foreach (SPField fld in newContentType.Fields)
 {
 Console.WriteLine("{0} | {1} | {2}", fld.StaticName.PadRight(20),
 fld.TypeDisplayName.PadRight(20),
 fld.Group.PadRight(20));
 }
 }
 }
 Console.ReadLine();
 }

 void CreateSiteColumn(SPWeb web, string name, SPFieldType fieldType,
 bool isRequired)
 {
 if (!web.AvailableFields.ContainsField(name))
 {
 web.Fields.Add(name, fieldType, isRequired);
 }
 }

 void AddFields(SPWeb web, string[] fieldNames, SPContentType contentType)
 {
 foreach (string fieldname in fieldNames)
 {
 if (web.Fields.ContainsField(fieldname))
 {
 SPFieldLink fieldLink = new SPFieldLink(web.Fields[fieldname]);
 contentType.FieldLinks.Add(fieldLink);
 }
 }
 //Update should be called to persist these changes
 //contentType.Update();
 }

Field Types
As you’ve seen, the SPFieldType enumeration can be used to determine the type of data
that a column can contain. However, it’s possible to create custom field types that inherit
from these base types and in turn use those custom field types to create columns.

324 PART IV Data Access Layer

There’s more to field types than simply specifying the type of data that a field can
contain. Let’s take a look at the objects involved before we delve into how they interact to
provide data access services for SharePoint. The following diagram shows the key objects
involved in creating custom field types.

Inheriting from SPField
The SPField class is the base class for all field types. Some examples of these field types
include SPFieldFile, which contains file data, and SPFieldLookup, which contains details
of a lookup to a column in another list or library. All field types must ultimately derive from
SPField either directly or indirectly. From a data access perspective, the SPField class is the
lowest level at which we can implement custom data access code, since behind the scenes of
the SPField class, the SharePoint platform handles the appropriate database interactions to
persist the value of the object.

As of this writing, Visual Studio 2010 does not provide a template for creating custom
field controls, so let’s take a look at how this can be done manually.

 1. Create a new Empty SharePoint project using Visual Studio 2010, as shown next.

Chapter 13 Data Access Overview 325

P
a

rt
 I

V 2. In the SharePoint Customization Wizard, be sure to select the Deploy As A Farm
Solution option.

 3. Add a new class file to project named SPFieldAddress.cs. This class will be our
implementation of SPField. Add the following code:

using Microsoft.SharePoint;

namespace CustomField
{
 public class SPFieldAddress : SPFieldMultiColumn
 {
 public SPFieldAddress(SPFieldCollection fields, string fieldName)
 : base(fields, fieldName) { }

326 PART IV Data Access Layer

 public SPFieldAddress(SPFieldCollection fields, string typeName,
 string displayName): base(fields, typeName, displayName) { }

 public override object GetFieldValue(string value)
 {
 if (!string.IsNullOrEmpty(value))
 {
 return new SPAddressValue(value);
 }
 else
 {
 return null;
 }
 }

 public override string GetFieldValueAsHtml(object value)
 {
 if (value!=null)
 {
 return base.GetFieldValueAsHtml(value);
 }
 else
 {
 return "--No Address Present--";
 }
 }
 }
}

 Our sample field will store multiple values in a single field. Rather than write a lot
of the code to implement this functionality from scratch, we’ve based our field on
SPFieldMultiColumn as opposed to SPField. SPFieldMultiColumn stores values of
type SPFieldMultiColumnValue, and by inheriting from this class, we can create a
custom data structure for our field.

 4. Add a new class named SPAddressValue.cs. Add the following code:

using Microsoft.SharePoint;

namespace CustomField
{
 public class SPAddressValue : SPFieldMultiColumnValue
 {
 public SPAddressValue() : base(5) { }
 public SPAddressValue(string value) : base(value) { }

 public string StreetAddress
 {
 get { return this[0];}
 set { this[0] = value;}
 }

 public string ApartmentNumber
 {
 get { return this[1];}

Chapter 13 Data Access Overview 327

P
a

rt
 I

V

 set { this[1] = value;}
 }

 public string City
 {
 get { return this[2];}
 set { this[2] = value;}
 }

 public string State
 {
 get { return this[3];}
 set { this[3] = value;}
 }

 public string Zip
 {
 get { return this[4];}
 set { this[4] = value;}
 }
 }
}

 5. So that the SharePoint platform knows about our new field, we need to
create a file containing some definition XML. The file should be deployed to
%SPROOT%Template\xml. Choose Project | Add SharePoint Mapped Folder.

 6. Map Template\Xml and then create a new XML file in the mapped folder named
fldtypes_FieldDemo.xml. When creating field definition files, it is important that
they be named appropriately. SharePoint loads files with names in the format
fldtypes_<whatever>.xml

 7. Add the following XML:

<?xml version="1.0" encoding="utf-8" ?>
<FieldTypes>
 <FieldType>
 <Field Name="TypeName">AddressField</Field>
 <Field Name="ParentType">MultiColumn</Field>
 <Field Name="TypeDisplayName">Demo Address Field</Field>
 <Field Name="TypeShortDescription">
Demonstration custom field for entering addresses</Field>
 <Field Name="UserCreatable">TRUE</Field>
 <Field Name="FieldTypeClass">
CustomField.SPFieldAddress, $SharePoint.Project.AssemblyFullName$</Field>
 <RenderPattern Name="HeaderPattern">
 <Property Select="DisplayName" HTMLEncode="TRUE"/>
 </RenderPattern>
 <RenderPattern Name="DisplayPattern">
 <Switch>
 <Expr>
 <Column/>
 </Expr>
 <Case Value="">

328 PART IV Data Access Layer

 <HTML>
 <![CDATA[--No Address Present--]]>
 </HTML>
 </Case>
 <Default>
 <Column SubColumnNumber="0" HTMLEncode="TRUE"/>
 <HTML><![CDATA[,]]></HTML>
 <Column SubColumnNumber="1" HTMLEncode="TRUE"/>
 <HTML><![CDATA[,]]></HTML>
 <Column SubColumnNumber="2" HTMLEncode="TRUE"/>
 <HTML><![CDATA[,]]></HTML>
 <Column SubColumnNumber="3" HTMLEncode="TRUE"/>
 <HTML><![CDATA[,]]></HTML>
 <Column SubColumnNumber="4" HTMLEncode="TRUE"/>
 </Default>
 </Switch>
 </RenderPattern>
 </FieldType>
</FieldTypes>

Inheriting from BaseFieldControl
The SPField class has many properties that define how a column based on the field type will
behave. One of these properties, FieldRenderingControl leads us onto the BaseFieldControl
class.

Each SPField-derived class must implement the FieldRenderingControl property, which
will return an object of type BaseFieldControl. Notice, however, that BaseFieldControl is an
abstract class. This means that in practice, each SPField derived class must return a concrete
implementation of the BaseFieldControl. Some examples of these implementations include
LookupField and FileField. These FieldRenderingControls are responsible for defining
and implementing the user interface for each field type. For example, in the case of the
LookupField control, when the page is in edit mode, the user interface may consist of a
drop down control containing values from the configured lookup list. In the same way as the
SPField object represents the lowest level of data access code, the BaseFieldControl represents
the lowest level of user interface code that can be written against the SharePoint platform.

Continuing with our earlier SPField example, we’ll add a custom field control to
provide us with a user interface for capturing data.

 1. Add a new class file named AddressField.cs. Insert the following code:

using System.Web.UI.WebControls;
using Microsoft.SharePoint.WebControls;

namespace CustomField
{
 class AddressField : BaseFieldControl
 {
 private TextBox _address;
 private TextBox _apartmentNumber;
 private TextBox _city;
 private TextBox _state;
 private TextBox _zip;
 protected override void CreateChildControls()
 {

Chapter 13 Data Access Overview 329

P
a

rt
 I

V

 if (this.Field == null || this.ControlMode == SPControlMode.Display
 || this.ControlMode == SPControlMode.Invalid)
 {
 return;
 }
 else
 {
 base.CreateChildControls();
 _address = new TextBox();
 _apartmentNumber = new TextBox();
 _city = new TextBox();
 _state = new TextBox();
 _zip = new TextBox();
 Table tab = new Table();
 tab.Controls.Add(BuildRow("Street Address", _address));
 tab.Controls.Add(BuildRow("Apartment Number", _apartmentNumber));
 tab.Controls.Add(BuildRow("City", _city));
 tab.Controls.Add(BuildRow("State", _state));
 tab.Controls.Add(BuildRow("ZIP Code", _zip));
 this.Controls.Add(tab);
 }
 }

 private TableRow BuildRow(string labelText, WebControl valueControl)
 {
 TableRow row = new TableRow();
 TableCell label = new TableCell();
 TableCell value = new TableCell();
 label.Text = labelText;
 value.Controls.Add(valueControl);
 row.Controls.Add(label);
 row.Controls.Add(value);
 return row;
 }

 public override object Value
 {
 get
 {
 EnsureChildControls();
 SPAddressValue field = new SPAddressValue();
 field.StreetAddress = _address.Text;
 field.ApartmentNumber = _apartmentNumber.Text;
 field.City = _city.Text;
 field.State = _state.Text;
 field.Zip = _zip.Text;
 return field;
 }
 set
 {
 if (value != null && !string.IsNullOrEmpty(value.ToString()))
 {
 SPAddressValue field = new SPAddressValue(value.ToString());
 _address.Text = field.StreetAddress;
 _apartmentNumber.Text = field.ApartmentNumber;

330 PART IV Data Access Layer

 _city.Text = field.City;
 _state.Text = field.State;
 _zip.Text = field.Zip;
 }
 }
 }
 }
}

 2. To hook up our custom BaseFieldControl to our SPField implementation, add the
following code to the SPFieldAddress.cs class:

 public override BaseFieldControl FieldRenderingControl
 {
 get
 {
 BaseFieldControl control = new AddressField();
 control.FieldName = this.InternalName;
 return control;
 }
 }

Validation
In SharePoint 2007, adding validation to fields was one of the main reasons for creating a
custom field control. As you’ve seen, creating field controls is a time-consuming task. The
good people at Microsoft realized that, from a development perspective, this wasn’t a good
use of resources and as a result, in SharePoint 2010, column validation has been added to
the SPField class. In effect, column validation eliminates the need for a lot of custom field
development by making it possible to enter validation formulae via the user interface.

When you’re adding a new column, you’ll see a new Column Validation section at the
bottom of the page, as shown next. Validation formulae use the same syntax as calculated
columns and as such can include pretty complex logic.

One thing that isn’t apparent from the user interface is that behind the scenes,
SharePoint creates a JavaScript representation of the validation formula. This allows
for values to be validated in the user interface without the need for a post back.

The values for these properties are stored in the ValidationEcmaScript,
ValidationFormula, and ValidationMessage properties of the SPField object.

New in

2010

Chapter 13 Data Access Overview 331

P
a

rt
 I

V

Lists and Document Libraries
We’ve looked at how content within SharePoint is defined using content types, columns,
and field types. The next element to consider is how the content is stored within the
SharePoint data store. That brings us to lists and document libraries.

Lists and document libraries don’t physically exist. There is a perception that data
stored in lists and libraries is slow to use because it exists in a file structure as opposed
to a relational database, but this is not the case. All content managed by SharePoint lives
in a relational database. Having said that, the highly abstracted nature of the data structure
doesn’t lend itself to high performance data access, and as you’ll see later, there are other
means of achieving this goal if it’s critical to your application design. Behind the scenes, all
user data is actually stored in a single table in the content database.

SharePoint offers two types of content containers: lists and document libraries. The
difference between these two is in the types of content that they can contain. Lists can
contain only content that is not derived from the document content type, and document
libraries can contain only content that is derived from the document content type.

From an object model perspective, a document library is a specialized form of a list.
This is an important point, because the SPList object and its properties are the starting
point for much of the custom code that we’ll write for the SharePoint platform. The
following class diagram shows the SPList object and how it corresponds to the objects
discussed earlier in this chapter:

This class diagram highlights an interesting point that we haven’t discussed so far: how
columns and content types are related to lists and document libraries. You’ve seen how a
content type can contain references to reusable columns, and you should understand how
these content types can be used by lists and libraries to define the types of content that may
be stored. However, from the class diagram, you can see that the SPList class has a Fields
collection as well as a ContentTypes collection. From the diagram, you can also see that the
SPWeb object has a Fields collection and a ContentTypes collection.

332 PART IV Data Access Layer

When we create content types or add new columns using the user interface, these columns
are defined at the site level (which the object model confusingly represents using the SPWeb
object). These columns are known as site columns and we can see this terminology used in the
user interface and throughout the documentation. The same is also true for content types:
when we create them using the user interface, they are known as site content types.

If we assign a content type to a list or library, SharePoint behind the scenes creates a
new content type that inherits from our Site content type. This new content type is known
as a List content type. Generally speaking, the ContentTypes collection of the SPList object
will contain List content types. List content types and list columns can be freely changed
at the list or document library level without affecting other instances of the associated site
content type or column that are in use elsewhere.

As mentioned, columns exist independently of content types. A content type simply
references the columns that it uses. As a result of this, when multiple content types are
added to a list or library, the Fields collection of the associated SPList object contains an
amalgamation of all the fields that are required. However, as well as the fields that are
required by associated list content types, you can also add arbitrary fields to a list that
are not associated with any content type.

Views
As we’ve seen from the class diagram, the SPList object has a collection of SPView objects.
This raises the question, What is an SPView and how does it relate to lists and libraries? An
SPView object represents the definition of a view on data contained within an SPList. In
much the same way as an SQL view is ultimately an SQL statement that specifies the columns
to select and any filters or sorting conditions, an SPView represents a query that selects values
to be displayed from a SharePoint list together with any additional formatting parameters.

Queries
Data contained within SharePoint lists and libraries can be queried in a few ways. In
Chapter 14, we’ll take a look at Language Integrated Query (LINQ) to SharePoint and
how this enables strongly typed queries while providing syntax checking at design time.

Fundamentally, the SharePoint platform provides its own query language in the form
of Collaborative Application Markup Language (CAML). As mentioned, one of the design
goals of SharePoint was to create a platform that allowed nontechnical users to define data
structures easily. As a consequence of this requirement, the underlying database schema
does not lend itself to executing user-generated SQL queries. In fact, direct access to the
underlying database is strongly discouraged and is not supported by Microsoft. Since
executing standard SQL statements is not an option, Microsoft introduced CAML as a
SharePoint-specific query language. Behind the scenes, the SharePoint platform converts
CAML queries into valid SQL that extracts the required data from the underlying database
schema, hiding the complexity of the schema from users.

Here’s an example of a CAML query:

<Query>
 <Where>
 <And>
 <Contains>
 <FieldRef Name='Title' />

Chapter 13 Data Access Overview 333

P
a

rt
 I

V

 <Value Type='Text'>abc</Value>
 </Contains>
 <Lt>
 <FieldRef Name='FileSizeDisplay' />
 <Value Type=’Computed’>50</Value>
 </Lt>
 </And>
 </Where>
 <OrderBy>
 <FieldRef Name=’Created’ Ascending='False' />
 </OrderBy>
</Query>

Performance
Extracting data using CAML is a pretty efficient operation. There is, of course, the
overhead of converting the CAML query into a SQL statement and the performance
implications of the highly abstracted database schema, but all in all, the process works well
and the minor performance hit is a reasonable price to pay for the flexibility available.
There’s a problem when the data access pattern gets a bit more complicated. For example,
using SQL, we can easily write a complex statement such as this:

Update Person.Contact
Set EmailPromotion=1
from HumanResources.Employee
Inner Join Person.Contact
on Person.Contact.ContactID=HumanResources.Employee.ContactID
Where Where HumanResources.Employee.Title like '%manager%'

This statement will execute a query and use the rows returned by the query to select other
rows in a second table that will then be updated. However, CAML does not support updates,
and as a consequence, in order to perform a similar action on SharePoint, an appropriate
CAML query will be executed and the resulting list will be loaded in memory. The SharePoint
runtime will then iterate through the list, making the necessary updates one row at a time.

This presents a few problems, and the first is memory usage. If the query returns a huge
amount of data, either because the rows contain a lot of content or because there are a
large number of rows, the memory requirements will be considerable. To make this problem
worse, remember that SharePoint is a web-based platform. Many users could be performing
similar operations at the same time, exponentially increasing the memory requirements.
The second problem is timeouts and perceived application performance; if such an operation
is performed during a page post-back, the user will need to wait for the operation to complete
before the page is refreshed. For very large operations, the process may take so long that
the page request times out and the user subsequently refreshes the page, compounding the
performance problem.

Of course, complicated data access operations such as this are not very common, and
with some careful programming, you can work around them. But what about simpler
operations that can be performed using the user interface? You’ve seen how nontechnical
users can create custom views of a list or library. What if a user creates a view that returns
10,000 rows on a single page? All of that data needs to be loaded into memory to render
the page, and worse still, the resultant page then needs to be downloaded to the browser,
causing network performance issues.

334 PART IV Data Access Layer

List Throttling
To prevent rogue database operations from bringing down a SharePoint server, SharePoint
2010 introduces the concept of list throttling. List throttling allows an administrator to specify
the maximum number of items that can be retrieved in a single request. So in our example,
if a user created a view with a page size of 10,000 but the administrator had specified a List
View Threshold of 2000 items, no rows would be returned and instead the user would
receive an error message indicating that the query exceeded the specified threshold.

Here’s how to configure list throttling:

 1. From SharePoint Central Administration, select Manage Web Applications.

 2. Select the appropriate application from the list, and then in the ribbon select
Resource Throttling under General Settings, as shown next:

New in

2010

The Resource Throttling dialog has a number of options that warrant explanation:

List View Threshold• This value determines the maximum number of items that
can be returned by a single query. For our example, we could set this to 2000
(which is the minimum value).

Object Model Override• In some situations, it is necessary to execute larger queries,
and a few options are available regarding how to tackle this problem. Object Model
Override allows developers to override the List View Threshold on a per-query basis
using code similar to this:
 private void DoQuery(SPList list, string theCaml)
 {
 SPQuery query = new SPQuery();

 query.Query = theCaml;
 query.QueryThrottleMode = SPQueryThrottleOption.Override;

 SPListItemCollection results=list.GetItems(query);
 }

List View Threshold for Auditors and Administrators• This value is the upper limit
for auditors and administrators. Note that when using the Object Model Overrides
the limit is not removed; this value is used instead of the List View Threshold.

Chapter 13 Data Access Overview 335

P
a

rt
 I

V

Daily Time Windows for Large Queries• This is the preferred solution for dealing
with large queries. Administrators can define a time window when usage is low and
allow large queries to execute. During this window of time, no limits are applied.

Column Indexes
When a list or library contains a large number of rows, executing a CAML query to return a
selection of data can take some time. To improve the performance of such operations, you
can apply indexes to columns in a list, although this approach has a few caveats.

Bearing in mind that the SharePoint database schema mandates the storage of all user
data in a single table, the indexes that we’re creating using the SharePoint object model or
user interface are not indexes in the SQL sense of the word. Such an index is not possible,
because in the underlying database schema, a single column may contain values for different
fields and different lists in subsequent rows. Applying an index to the column would have
unintended consequences. Without going into technical minutiae, to get around this
limitation of the database schema, when an index is created on a column, the value being
indexed is copied to a separate table. As a consequence, if a list has 10,000 rows, for each
column being indexed, a further 10,000 rows are created in the separate index table. For
example, if 5 columns were indexed, 50,000 rows would be added to the index table. The
drawback with this is that the table has to be kept in sync with the main data table, and as
the number of rows in the table increases, it creates an element of diminishing returns.
Here’s how to add an index to a column using the user interface:

 1. Open the list containing the column to be indexed. In the ribbon, select List
Settings from the List Tools tab, as shown:

 2. Select Indexed columns in the Columns section of the page, and then click Create
A New Index.

Here’s how to add an index using code:

private void AddIndex(SPList list, string primaryFieldName,
 string secondaryFieldName)
 {
 SPField primary;
 SPField secondary;
 if (list.Fields.ContainsField(primaryFieldName))
 {
 primary = list.Fields[primaryFieldName];
 if (!string.IsNullOrEmpty(secondaryFieldName))
 {
 if (list.Fields.ContainsField(secondaryFieldName))
 {
 secondary = list.Fields[secondaryFieldName];

336 PART IV Data Access Layer

 list.FieldIndexes.Add(primary, secondary);
 }
 }
 else
 {
 list.FieldIndexes.Add(primary);
 }
 }
 list.Update();
 }

Summary
This short whirlwind tour of the SharePoint data access model has demonstrated the
flexibility and extensibility built into the fundamentals of the platform. In the remainder
of this part of the book, you’ll see how other features of SharePoint build on this flexibility
to address a host of other, more specific business requirements such as Enterprise Search,
Business Intelligence, and Social Computing.

Having said that, it’s only fair to point out that the built-in data access model is not
suitable for every scenario. When the ability to access the database schema using SQL is
a key factor in determining performance, it makes more sense to implement a standard
relational database than try to fit a square peg into a round hole. However, as we’ve seen
throughout this book, there’s so much more to SharePoint than data access.

Even with a separate data store, it’s still perfectly possible to leverage the many other
features of SharePoint—and in a sense that’s one of the key strengths of the platform. If
one component doesn’t work quite the way you need it to, more often than not you can
easily swap it out with some custom code that exactly meets your requirements.

14
CHAPTER

337

LINQ to SharePoint
and SPMetal

In previous versions of SharePoint, you could query lists and document libraries using
Collaborative Application Markup Language (CAML). As an XML dialect, CAML syntax is
relatively easy to pick up—you simply need to know which elements perform which functions,
and then combine them to form a query. For example, a CAML query to return all items in
a list named Products, where the product name begins with the letter A, might look something
like this:

<Query>
 <Where>
 <BeginsWith>
 <FieldRef Name='Title' />
 <Value Type='Text'>A</Value>
 </BeginsWith>
 </Where>
</Query>

The CAML syntax covers a number of standard functions, including logic operations
such as AND and OR as well as comparison operations such as greater than, less than, equal
to, and between. The drawback of the CAML syntax, however, is that it’s not parsed by the
compiler at compile time. Only when the statement is processed at runtime will an error
be detected. To make matters worse, it’s often possible to parse an erroneous statement
and have the query return no results without returning an error. Take the following code
snippet as an example:

SPList theList = SPContext.Current.Web.Lists["Products"];
SPQuery query=new SPQuery();
query.Query="<Query><Where><BeginsWith><FieldRef Name=\"Title\" />"+
 "<Value Type=\"Text\">A</Value></BeginsWith></Where></Query>";
SPListItemCollection results = theList.GetItems(query);

At first glance, this query looks correct; however, the enclosing <Query> element is
unnecessary. As a result, this query will not return any results. As you can imagine,
debugging problems like this can be difficult and time consuming.

338 PART IV Data Access Layer

One of the major drawbacks of the default SharePoint data access model is the use
of indexed properties to store data. Since it isn’t possible for the compiler to determine
whether an index value or key is valid at compile time, bugs often go undetected until
runtime, when they are much more expensive to fix. Furthermore, even small changes to
field names or identifiers can wreak havoc in an application, making refactoring a minefield.

Since the introduction of SharePoint 2007, a number of solutions to this problem have
been proposed. Ultimately, all such proposals have one common thread: the creation of
a strongly typed data access layer. Index-based fields are wrapped with a strongly typed
interface, which is in turn presented to the rest of the application as the single method
of accessing data stored in indexed fields. Of course, this solution does not resolve the
problem of a lack of compile time validation for indexed fields, but it does isolate runtime
errors within a single layer, making resolving bugs much easier.

So, instead of program logic that looks like this,

SPListItem myItem=properties.ListItem;
String myField=myItem["TestField"].ToString();

and we mistakenly enter this,

String myField=myItem["testField"].ToString();

we’ll get an object not found error, since the fields collection does not contain an item with
the index testField.

We end up with something that looks like this:

MyDataObject d=new MyDataObject(properties.ListItem);
String myField=d.TestField;

With this code, a compilation error will occur if we mistype the field name. Furthermore,
IntelliSense support will allow us to enter code much faster and more accurately.

Of course, some overhead is incurred in implementing an additional data access layer.
The programmer must create additional wrapper objects for each list, document library,
or content type. In addition, the actual code involved in creating these objects is pretty
mundane. As a result, a number of utilities have been written over the years that automatically
generate data access objects from SharePoint lists and libraries. One such utility started life
as SPMetal, part of a CodePlex project to deliver Language Integrated Query (LINQ) to
SharePoint, created by Bart De Smet in 2007. Now, with SharePoint 2010, the SharePoint
development team has picked up where Bart left off and have added complete LINQ
functionality, including a new version of SPMetal as part of the standard toolset.

Overview of LINQ
Before we delve into the workings of SPMetal, let’s spend some time looking at LINQ.
We’ll examine what it is, where it came from, and why it’s an essential tool for developing
applications using SharePoint 2010.

I have to confess that I’m a relatively late convert to LINQ. I’ve been aware of the
technology for some time but had always assumed it to be some kind of framework for

Chapter 14 LINQ to SharePoint and SPMetal 339

P
a

rt
 I

V

generating Structured Query Language (SQL). As a developer who has spent many years
avoiding dynamically generating SQL statements in favor of well-written and much more
secure stored procedures, I’d always considered the technology to be somewhat contradictory
to established best practice. What I’d failed to see was the power of LINQ outside the SQL
world.

LINQ is not just about SQL—fair enough, the syntax is deliberately similar to SQL—but
as a technology, it’s about working with collections of data, not specifically relational database
type data, but in fact practically any collection of data that you’re ever likely to use in the
.NET world.

To illustrate the implications of such a tool, think about the last application you wrote.
How many for loops did you use to locate specific items within collections of data? How
many lines of code did you write to handle situations in which the item you expected wasn’t
found within the collection? What about multiple collections with related items? Did you
use nested for loops to extract common data into a new collection for use within your logic?
If you’ve written any application of more than a few lines long, you’ve likely used one or
more of these techniques.

The true power of LINQ is that it provides a much more effective way to find and
process exactly the data that you need. No longer do you need to knock on every door in
the street to find out who lives at number 15; you can simply ask the question, “I’d like to
know the occupant name where the house number is 15,” and voila, the magic that is LINQ
will return the correct answer. But what if you live in a town with many streets, each one
with a “Number 15”? What if you want to know who lives at number 15 Main Street specifically?
You don’t need to walk up and down every street knocking on every door; you can simply
ask the question, “I’d like to know the occupant name where the house number is 15 and
the street name is Main Street,” and, again, LINQ will return the correct answer. This truly
is powerful stuff. When it comes to working with collections of data, LINQ is the tool we’ve
been waiting for.

Of course, LINQ isn’t really magic. There’s a certain amount of smoke and mirrors
involved, particularly with regard to the SQL-like syntax. But behind the scenes it’s actually
quite simple. Let’s take a look at a few examples to illustrate how it works.

Locating Data Using an Iterator
One of the built-in implementations of LINQ is LINQ to Objects, which is installed as part
of the .NET Framework 3.5. Take a look at this code snippet to get an idea of how it works:

List<string> members = new List<string> { "John", "Paul", "George", "Ringo" };
List<string> results = new List<string>();
 foreach (string m in members)
 {
 if (m.Contains("n")) results.Add(m);
 }

As you can see, this piece of code iterates through a list of strings, returning a new list
containing only those items from the original list where the character n was found. Nothing
groundbreaking here. However, if you include the System.Linq namespace in your class
file, you’ll notice that the IntelliSense members’ list for the results object now includes a

340 PART IV Data Access Layer

whole host of new methods. Interestingly, however, if you look up the documentation for a
List<T> object, you’ll find that none of the new methods are listed. There’s a perfectly good
explanation for this: these new methods are implemented as extension methods, an essential
new feature in .NET 3.5 for supporting LINQ. Extension methods allow developers to
attach methods to a class by defining additional static methods in a referenced assembly.
Here’s an example:

 public static class MyExtensions
 {
 public static string MyExtension(this List<string> list, string message)
 {
 return "MyExtension says " + message;
 }
 }

Notice the use of the this modifier in the function signature. The modifier specifies the
type to which the extension methods should be attached. This example specifies that the
extension method should be available to objects of type List<string>. Extension methods
work only when their containing namespace is explicitly imported—hence, the necessity
to import the System.Linq namespace to see the additional methods for this generic list.
Strictly speaking, the extension methods that we see are actually added to the generic
IEnumerable<TSource> interface and as such are available to any object that implements
this interface.

Locating Data Using an Anonymous Delegate
One of the extension methods that we can make use of is the Where() method that we
could use to rewrite our code as follows:

List<string> members = new List<string> { "John", "Paul", "George", "Ringo" };
var results = members.Where(delegate(string m) { return m.Contains("n"); });

The Where method accepts an anonymous delegate as a parameter, and behind the scenes
the method is actually calling the delegate for every item in the list. Whenever the delegate
returns true, the item is added to a new results list. The results list is then returned when the
Where method has iterated through each item in the collection. From this explanation, you
can see that we’re actually performing much the same work as our original function; we’re
simply writing less code to do it.

Locating Data Using a Lambda Expression
We used an anonymous delegate in the preceding example, but .NET 3.5 introduces
another new feature known as the lambda expression. Using a lambda in place of the
anonymous delegate, we can rewrite our code as follows:

List<string> members = new List<string> { "John", "Paul", "George", "Ringo" };
var results = members.Where((string m) => { return m.Contains("n"); });

Lambda expressions make use of the => operator to separate the expression parameters
from the expression body. This example defines an expression that accepts a string

Chapter 14 LINQ to SharePoint and SPMetal 341

P
a

rt
 I

V

parameter named m. You’ll notice that we don’t need to define the return type; just as
with an anonymous delegate, the compiler does this automatically for us.

Hopefully, you’ll see that using lambda expressions offer a more concise way of writing
an anonymous method.

Locating Data Using LINQ
With more than a little sleight of hand and a healthy dose of compiler voodoo, LINQ takes
this expression syntax a step further. Instead of hammering out several different styles of
brackets, we can simply rewrite our code as follows:

List<string> members = new List<string> { "John", "Paul", "George", "Ringo" };
var results = from m in members
 where m.Contains("n")
 select m;

As you’ve seen by working through these simple examples, behind the scenes, LINQ to
Objects is doing much the same work that we would have done using an iterator; the new
syntax simply provides a much cleaner way of presenting the logic. However, consider this
example, which we’ll revisit later in this chapter:

var changes = (from c in dxWrite.ChangeConflicts
 from m in c.MemberConflicts
 where m.CurrentValue.Contains(m.OriginalValue)
 && m.CurrentValue is string
 select m).ToList();

I’m sure you can realize the benefit of the LINQ syntax when compared to the
complicated logic that you’d have to implement to produce this result set using iterators.

LINQ to SharePoint
In the preceding few examples, we used LINQ to Objects to illustrate the query syntax of
LINQ—in fact, the syntax is pretty similar regardless of which provider you’re using. For
example, to retrieve a list of records from a table using LINQ to SQL, you’d write
something like this:

NorthwindDataContext context = new NorthwindDataContext());
var customers = from c in context.Customers
 where c.Name.Contains("n")
 select c;

Or to get a list of nodes from an XML document using LINQ to XML, you’d use something
like this:

XDocument loaded = XDocument.Load(@"C:\users.xml");
var q = from u in loaded.Descendants("user")
 where u.Name.Contains("n")
 select u;

342 PART IV Data Access Layer

As you’ll see, the only major difference is in the way that the “table” is referenced. When
we used LINQ to Objects, the “table” was simply the collection variable, whereas when using
LINQ to SQL the “table” is actually a database table. To make this less confusing, this “table”
object is commonly referred to as a gateway object, since technically it doesn’t necessarily
represent a table—the way it’s used in the SQL-like syntax makes it seem like a table.

Microsoft.SharePoint.Linq.DataContext
The gateway object for LINQ to SharePoint is Microsoft.SharePoint.Linq.DataContext. The
DataContext object exposes a number of methods and properties, of which the following
are most significant for the purposes of this discussion:

GetList(T)• This method returns a generic EntityList object that represents that
specified list. Here’s an example:

EntityList<Customer> customers=dataContext.GetList<Customer>("Customers");

Refresh • This method can be used to refresh one or more entities with the latest
data from the content database. It has three overloads:

Refresh(RefreshMode, IEnumerable) • Refreshes the collection of entities that
are defined by the IEnumerable parameter

Refresh (RefreshMode, Object) • Refreshes a single entity as defined by the
object parameter

Refresh(RefreshMode, Object[]) • Refreshes an array of entities as defined by
the object array parameter

Each of the overloads for the Refresh method accepts a RefreshMode parameter. This
enumeration is used to specify how concurrency conflicts should be handled. Here are the
possible values:

KeepChanges• Accept every user’s changes with prejudice for the current user

KeepCurrentValue • Rolls back all other users’ changes

OverwriteCurrentValues • Gives absolute prejudice to the database version

These descriptions are pretty vague, and I’ll cover how LINQ to SharePoint handles
concurrency conflicts in more detail a bit later. For now, it’s enough to know that the
Refresh methods of the DataContext object require one of these three values.

RegisterList• This method enables continued reading and writing to an EntityList

object after it’s been renamed or moved. Since the EntityList object is effectively a
snapshot of a list at time of creation, if the list is subsequently moved or renamed,
the EntityList object will become invalid. The RegisterList method allows you to
re-point the EntityList object to the new destination rather than having you dispose
and re-create the EntityList object. This method has two overloads:

RegisterList<T>(String,String)• Used if the list is renamed within the same site

Chapter 14 LINQ to SharePoint and SPMetal 343

P
a

rt
 I

V

RegisterList<T>(string• newListName, string newWebUrl, string oldListName) Used
if the list is moved to another web site

SubmitChanges()• As with the Refresh method, this method has three overloads
that are used to specify how concurrency conflicts are handled:

SubmitChanges()• Persists changes to the content database. If a concurrency
conflict occurs, a ChangeConflictException will be thrown and the ChangeConflicts

property will be populated with one or more ChangeConflict objects. This method
assumes a failure mode of FailOnFirstConflict. When items are updated using
this method, the version number is automatically incremented if versioning is
enabled.

SubmitChanges(ConflictMode)• Used when you don’t want to use the default
conflict handling behavior. Two possible values can be used for ConflictMode:
ContinueOnConflict, which attempts all changes, throws an exception if any
concurrency errors occurred, and then rolls back all changes; or the default of
FailOnFirstConflict, which throws an error when the first concurrency error
occurs, and then rolls back all changes made up to that point. When items are
updated using this method, the version number is automatically incremented if
versioning is enabled.

SubmitChanges(ConflictMode, bool • systemUpdate) Used for the same reason as
the preceding overload, with one significant difference: if the systemUpdate flag is
set to true, updates are performed using the SystemUpdate() method rather
than the Update() method. This is significant because updating an item using
SystemUpdate does not increment the version number. Setting the systemUpdate
flag to false would have the same effect as using the preceding overload with the
same ConflictMode.

In addition to these methods are a number of properties that are worth covering briefly:

ObjectTrackingEnabled• This Boolean property is used to determine whether the
DataContext object should track changes for each entity that’s associated with it.
If this value is set to false, calling SubmitChanges will have no effect. This property
exists for performance reasons; by setting the value to true, the DataContext object
has a lot of extra work to do to track any changes to its associated objects. As a rule
of thumb, you should set this value to false unless you specifically need to add, edit,
update, or delete data. By default, object tracking is enabled.

ChangeConflicts• This ChangeConflictCollection property, as its type suggests, is a
read-only collection of ObjectChangeConflict objects. Each ObjectChangeConflict

object represents a set of one or more discrepancies between the in-memory version
of a list item and the current persisted version. The ObjectChangeConflict object has
a MemberConflicts collection that contains a collection of MemberChangeConflict

objects, with each object representing the discrepancy in a single field. It’s possible to
have an ObjectChangeConflict object without any associated MemberChangeConflict

objects. In this case, the ObjectChangeConflict object exists because the original
item has been deleted. This condition can be verified by checking the IsDeleted

property of the ObjectChangeConflict object.

344 PART IV Data Access Layer

TIP Depending on the profile of your application, you may find that you use LINQ most often for querying
data as opposed to making changes. Furthermore, you’ll generally be making changes to a very small
dataset, whereas you may be querying much larger datasets. In this situation, maintaining a separate
DataContext object for updates is usually the most efficient approach. In effect, you’ll have one
DataContext with object-tracking enabled that you can use for updates, and another with object-
tracking disabled that you can use for queries.

Figure 14-1 shows the relationship between the conflict resolution objects. Conflict
resolution is covered in more detail later in this chapter in the section “Record Level
Conflict Resolution.”

I’ve covered the main functional elements of the gateway class for LINQ to SharePoint,
and a few other objects are significant as well, such as EntityList, EntityRef, and EntitySet.
I won’t cover these in detail since their operation is practically identical to similar objects
used on other variants of LINQ; their usage will become apparent in the code samples that
follow. The DataContext object has special significance since it provides the gateway to
using standard LINQ syntax, although, as you’ll see when we look at SPMetal, generally the
DataContext object isn’t used directly; instead, common practice is to create a number of
derived classes that represent each list in the data structure.

Demonstration Scenario
Hopefully, you now have a clear understanding of what LINQ is and how it works. We need
to use entity objects that represent the data in our application if we want to use LINQ syntax.
To illustrate the use of LINQ to SharePoint and the tools for generating entity classes,
consider the following scenario:

Your company is involved in renting industrial machinery. You’re working on a web-
based application that allows customers to view a list of the items that the company
currently rents, together with details of the individual rental contracts. Customers come
from a number of geographical locations and sometimes relocate equipment from one
location to another. To make it easier for customers to track the location of the rented
equipment, your application allows the customer to add multiple notes for each item,
and these notes should also be visible in your web application.

Figure 14-1 Confl ict resolution object relationships

Chapter 14 LINQ to SharePoint and SPMetal 345

P
a

rt
 I

V

NOTE You might appreciate a bit of clarification regarding some of the terminology used here. You
non-British readers rent equipment, and equipment is said to be rented from the company. In the
United Kingdom, we hire equipment, and equipment is said to be on hire when it is rented. So an
“on-hire asset” refers to an asset that can be rented and is subject to a rental contract (or hire
contract).

Since your company has a relatively small number of large customers, you’ve opted for
an extranet solution. Each customer has a private site within your SharePoint farm that they
can use to assist with managing their account with your company. Since Hire Contracts are
standard documents used by all customers, you’ve defined a Hire Contract content type in
your farm. Each customer site has a Contracts document library that contains Hire Contract
documents. Additionally, you’ve defined an On-Hire Asset content type that represents the
individual item of machinery that is subject to the rental contract. Each asset has a unique
asset tag, and you allow customers to add notes against each asset tag in a separate list
called Asset Notes. If implemented using a relational database, your data structure would
look similar to Figure 14-2.

A common misconception is to equate a list or document library in SharePoint with a
logical entity in your data structure. However, this isn’t necessarily the best approach and
often making such an assumption makes you miss out on a lot of the real power of the
SharePoint platform. A more useful parallel is to equate a logical entity with a content type.
Since lists and document libraries can contain items of more than one content type, and sites
can contain more than one list with the same content type, using lists and documents libraries
to store items is mainly useful for setting security on a subset of items or for grouping items
based on their status or some other business-specific reason. Bearing this in mind, when we
translate our data structure into a SharePoint model, we end up with something similar to
Figure 14-3. Logically, we still end up with the same collections of entities, but our use of
content types allows us to create an unlimited number of web sites, each with the same
structure and permissions to view only the customer-specific subset of data.

Figure 14-2 Logical data structure for extranet application

346 PART IV Data Access Layer

If you compare this model to a standard ASP.NET application using a relational
database to implement our original logical data structure, you can see that implementing
security and filtering for each customer would incur significant overhead.

Create a Data Structure Using SharePoint 2010
To create the demonstration scenario data structure, take the following steps:

Create Site Columns

 1. Open SharePoint Designer 2010. Click New Blank Web Site.

Figure 14-3 SharePoint implementation of logical data structure

 2. In the dialog box that appears, type the site name as Chapter14.

 3. Once your new site has been created, you’ll see a Site Objects menu, as shown next.
Click Site Columns.

Chapter 14 LINQ to SharePoint and SPMetal 347

P
a

rt
 I

V

 4. From the ribbon menu at the top of the window, click New Column, and then
choose Single Line of Text from the menu.

 5. In the dialog that appears, enter the name ContractId, and then, in the Put This
Site Column Into area, select New Group and enter Hire Sample Columns. The
completed dialog should look like this:

348 PART IV Data Access Layer

 6. Repeat steps 4 and 5 to create the following columns:

Column Type Name Group

AssetId Single Line of Text Hire Sample Columns

AssetTag Single Line of Text Hire Sample Columns

Contract Start Date Date & Time Hire Sample Columns

Contract End Date Date & Time Hire Sample Columns

Location Code Single Line of Text Hire Sample Columns

 7. Since each of these fields is mandatory, it’s necessary to disallow blank values. To do
this, select the column from the Site Columns list, and then select Column Settings
from the ribbon. In the dialog that appears, uncheck the Allow Blank Values checkbox.
Perform this action on each created field.

TIP To make it easier to find specific columns, the column headers in the site columns list can be
used to filter the view. For example, clicking the down arrow on the far right of the Group header
allows you to select Hire Sample Columns as a filter. Only items that match the filter are shown
in the list.

Create Content Types

 1. From the Site Objects menu, select Content Types, and then select New Content
Type from the ribbon. In the dialog that appears, enter Hire Contract as the
content type name. Then, in the Select a Parent Content Type From drop-down,
select Document Content Types. In the Select Parent Content Type drop-down, select
Document.

 2. Create a new group to hold your custom content types. Click the New Group
checkbox, and then, in text field, type Hire Sample Content Types.

Chapter 14 LINQ to SharePoint and SPMetal 349

P
a

rt
 I

V 3. Repeat steps 1 and 2 to create another content type named On-Hire Asset, also in
the Hire Sample Content Types group. This time, set the Parent Content Type
drop-downs to List Content Types and Item.

 4. You now have two new, blank content types. The next step is to associate your site
columns with these content types. To do this, highlight the Hire Contract content
type and select Edit Columns from the ribbon. A list of the columns associated with
the content type will appear. You’ll notice that a number of columns are already
defined. These columns are inherited from the parent content type that you selected
when creating this new content type. To add in your precreated site columns, select
Add Existing Site Column from the ribbon, and then use the dialog that appears
to find and add the ContractId column, the Contract Start Date column, and the
Contract End Date column. Once you’ve added the required columns, click the
Save icon in the title bar.

350 PART IV Data Access Layer

 5. Repeat step 4 for the On-Hire Asset content type. This time add the AssetId column
and the AssetTag column.

 6. Repeat steps 3 and 4 to create an Asset Note content type. This time add the
Location Code column.

You should now have three content types within the Hire Sample Content Types group:
Asset Note, Hire Contract, and On-Hire Asset.

Create Customer Template Site
Now that we’ve defined the content types that make up our data structure, our next step is
to create a template site that can be deployed for each individual customer. You might have
noticed a Customer content type was not included to represent our customer. By using
multiple sites, one for each customer, the site itself effectively becomes the Customer data
container. This may seem a bit bizarre when thinking in relational database design terms,
but when you give it a bit more thought it makes sense: In our relational data structure,
the Customer table existed only as a means of identifying which customer corresponded
to which contract. In effect, it provided a means of segmenting the contract data (and
therefore any data that was related to contracts). By using content types within multiple
sites, we achieve similar segmentation. Each site contains only data that should be visible
to a particular customer. To see data for a different customer, we look at a different site.

 1. The first thing that we need to do is generate a new subsite to act as our template.
In SharePoint Designer 2010 Site Objects menu, select Blank Site to change the
ribbon to display the Site menu. Select the Subsite menu option from the ribbon.
In the dialog that appears, select Blank Site. Type in the location of the new site:
http://<your_Server_Name>/Chapter14/CustomerTemplate. Then click OK.

Chapter 14 LINQ to SharePoint and SPMetal 351

P
a

rt
 I

V

 After the subsite has been created, a new instance of SharePoint Designer 2010 will
open automatically. You’ll see from the title bar that it’s pointing to the new subsite.
If you select Content Types or Site Columns from the Site Objects menu, you’ll
notice that the content types and columns that were created in the preceding steps
are available to this new site. By default, content types are inherited by all subsites
within a site collection; as a result, our content types will be available to any sites
that are created as subsites of our http://localhost/Chapter14/ site.

 2. Now that we have a new blank site, we need to add lists to hold our data. To do this,
select Lists and Libraries from the Site Objects menu. Then, from the ribbon, select
Custom List. Type On-Hire Assets as the name of the list.

 3. Repeat step 2 to create another custom list named Asset Notes.

 4. Since hire contracts are documents rather than simple collections of data, we’ll
create a document library instead of a list. To do this, select Document Library
from the ribbon, and then choose Document Library from the list of options.
Type Hire Contracts for the name in the dialog that appears.

Associate Content Types
The next step is to associate our content types with the lists that we’ve created. Do this:

 1. Highlight the Asset Notes list, and then select List Settings from the ribbon. The
list configuration page for the Asset Notes list will appear. You’ll notice a section
named Settings with a series of checkboxes, as illustrated. Check the Allow
Management Of Content Types checkbox. By default, SharePoint creates simple
lists and libraries that are bound to basic system content types, such as Item and
Document. Since we want to bind the list to a specific content type, we must
configure the list to allow such binding. With this option selected, we are free
to add and delete content types as appropriate.

 2. In the Site Objects menu, select Content Types. Then click the Add button. Select
and add the Asset Note content type. Then highlight the Item content type select
Delete from the ribbon.

 3. Click the Save icon in the title bar to save the changes.

 4. Repeat steps 1–3 for the On-Hire Assets list. This time, add the On-Hire Asset
content type instead of the Asset Note content type.

 5. Repeat steps 1–3 for the Hire Contracts document library. This time add the Hire
Contract content type.

352 PART IV Data Access Layer

Defining Relationships
We now have a template site with each of our three content types bound to a list or library.
We could start entering data into these lists. However, one thing that we haven’t considered
is the relationships between the various content types. In SharePoint, relationships are
defined by using lookup fields. Each lookup field is bound to a particular column in a
particular list (although other columns can also be carried through if required). In
relational database terms, the lookup field works like a foreign key, holding a value
that uniquely identifies a record on the source list.

NOTE It is possible to create lookups that can accept multiple values, but for the purposes of defining
this data structure, we’re interested only in single value lookups.

Lookup columns target a specific list. While it is possible to include lookup fields in
content types, each time the content type is used the lookup field is bound to the list that
was set when the content type was created, potentially causing security issues if the list is in
a separate site. For that reason, when using lookups to define data structures, you should
view them as a constraint to be added on the list, as opposed to a field to contain data
within the content type. Adding lookups in a content type greatly reduces the portability
of the content type.

Our data structure requires two relationships:

On-Hire Asset is related to Hire Contract via ContractId.•

Asset Note is related to On-Hire Asset via AssetId.•

To create these relationships, take the following steps:

 1. In the Site Objects menu, select Lists and Libraries. Highlight the Asset Notes list.
Select Edit Columns from the ribbon.

 2. Select Add New Column from the ribbon and then choose Lookup (information
already on this site) from the list of
options that appears.

 3. In the dialog that appears (shown next),
select On-Hire Assets from the List Or
Document Library drop-down. In the
Field drop-down, select the AssetId.
Uncheck the Allow Blank Values
checkbox. Click OK to create the
new column.

 4. Once the column has been created,
right-click the column name and select
Rename. Change the column name by
typing Asset Reference.

Chapter 14 LINQ to SharePoint and SPMetal 353

P
a

rt
 I

V

 5. Click the Save button in the title bar to save the changes.

 6. Repeat steps 1–5 for the On-Hire Assets list. This time, bind the lookup column to
the Hire Contracts document library and set the field to ContractId. Rename the
new field Contract Reference.

Create a Site Template
We’ve now created a template web site for use by our customers, complete with a data
structure that’s logically identical to the relational schema that we defined in Figure 14-2.
The final step that we need to take is to save this site as a template so that we can easily
create a new site for each customer as required. To do this, do the following:

 1. From the Site Objects menu, select Blank Site. In the ribbon, select Save as
Template.

 2. In the browser window that appears, enter Hire Sample Template in the File Name
text box, and then in the Template Name text box, enter Hire Sample Template.
Then click OK to create the template.

The new template will be stored in the User Solutions Gallery, where it can be activated
and used to create additional sites as required. The solutions gallery is accessible from the
root site on any web application. So, for example, if your server is named MyServer and you
have a web application running on http://MyServer, then the solutions gallery can be found
at http://MyServer/_catalogs/solutions/Forms/AllItems.aspx. Using solutions for
deployment is covered in more detail in Chapters 2 and 19, but for the purposes of
demonstrating the use of LINQ, we can simply use our template site as our data source.

Creating Entities Using SPMetal
Now that we’ve created a basic data structure, let’s make use of SPMetal to generate some
entity classes. At the time of writing, SPMetal is implemented as a command line only tool.
It’s installed by default at %SPROOT%\Bin\SPMetal.exe and can be called using the
command line arguments in Table 14-1.

The tool will produce a .cs or .vb file containing class definitions for each entity available
within the site referenced by the /web: argument. Additionally, it will also create a strongly
typed DataContext object with properties for each list and document library within the data
structure.

Create a Windows Forms Sample Application
First things first: if we’re going to make use of LINQ, we’ll need a Visual Studio 2010
project. Create a new Windows Forms Application project. It’s important to make sure that
the project is set to use .NET Framework 3.5 and not version 4.0. For ease of narrative, save
the project in C:\Code\Chapter14 and call it LinqSampleApplication.

http://MyServer/_catalogs/solutions/Forms/AllItems.aspx

354 PART IV Data Access Layer

Once the project has been created, we need to take a few steps to make it compatible with
SharePoint 2010. First, we need to set the build type to be 64-bit. SharePoint 2010 is 64-bit
only, and by default Windows Forms Application projects are configured for 32-bit builds.

 1. From the Build menu, select Configuration Manager.

Table 14-1 SPMetal Command Line Arguments

Option Value Definition Example

web The complete, absolute URL of the
web site whose data is modeled by the
entity classes

/web:http://localhost/Chapter14

code The relative or absolute path and
filename of the output file

/code:Chapter14.cs

language The programming language of the
generated code

/language:csharp

namespace The namespace that contains the entity
class declarations

/namespace:Chapter14.HireSample

useremoteapi No value /useremoteapi

user The user in whose context SPMetal
executes

/user:mydomain\bob

password The password for the user specified in
the user option

/password:Pa$$w0rd

serialization Specifies whether objects that
instantiate the generated classes are
serializable; if this option is not used,
“none” is assumed

/serialization:unidirectional

parameters Identifies the path and name of an
XML file that contains overrides of
SPMetal default settings

/parameters:ParameterFile.xml

Chapter 14 LINQ to SharePoint and SPMetal 355

P
a

rt
 I

V

 2. Under Platform, select <New…>.

 3. In the New Project Platform dialog, select x64 from the New Platform drop-down
list. Click OK to save the changes.

Next, we need to add references to the SharePoint object model:

 1. In the Solution Explorer pane, right-click References and then select Add Reference.

 2. In the dialog that appears, select Microsoft.SharePoint and Microsoft.SharePoint.Linq.

 3. Click OK to add the references.

Generate Entity Classes
We’re now ready to use SPMetal to generate entity classes for our extranet sample.
Open a command prompt, change the current directory to C:\Code\Chapter14\
LinqSampleApplication, and then execute the following command (note that this
command should be entered on a single line, not on two lines as shown here):

%SPROOT%\bin\SPMetal.exe /web:http://localhost/Chapter14/CustomerTemplate /
code:HireSample.cs

TIP Define a system variable to point to SharePoint root; it saves a whole load of time instead of typing
C:\Program Files\Common Files\Microsoft Shared\Web Server Extensions\14\. Instead you can
simply type %SPROOT% as a shortcut. See Chapter 2 for a step-by-step guide.

SPMetal will create a new file named HireSample.cs in the project directory for our
LinqSampleApplication. To add it into the project, select Add Existing Item from the
Project menu, and then select the file named HireSample.cs.

Have a look at the code in HireSample.cs. You’ll notice that each class is declared using
the partial keyword. This allows you to extend the functionality of the auto-generated classes
using additional files so that if the classes are automatically regenerated using SPMetal, any
customizations are not lost.

Figure 14-4 shows the objects that are defined in HireSample.cs. You’ll notice that
a HireSampleDataContext class that’s derived from DataContext has been defined and
has properties corresponding to each of the three lists: AssetNotes, HireContracts, and
OnHireAssets. Additionally, there are two classes derived from AssetNote and OnHireAsset,
named AssetNotesAssetNote and OnHireAssetsOnHireAsset. These derived classes contain
the additional lookup values that we added to define the relationships between the content
types. Since the lookup values were not added to the content type for reasons mentioned
earlier, a new derived class exists containing only the lookup field.

Controlling Entity Creation Using a Parameters File
To save any confusion, it would be nice to rename a few of the entities, particularly the
derived entities containing the additional columns. While it’s perfectly possible to do this
manually in code, the next time SPMetal is used to regenerate the entities, all changes will
be lost and any code that refers to the old entity names will fail to compile. Instead, SPMetal
allows for the use of a parameters file.

356 PART IV Data Access Layer

In Visual Studio, add a new XML file named SPMetalParameters.xml. Insert the
following XML into the file:

<?xml version="1.0" encoding="utf-8" ?>
<Web AccessModifier="Internal"
 xmlns="http://schemas.microsoft.com/SharePoint/2009/spmetal">
 <List Name="Asset Notes" Type="AssetNote">
 <ContentType Name="Asset Note" Class="AssetNote" />
 </List>
 <List Name="On-Hire Assets" Type="OnHireAsset">
 <ContentType Name="On-Hire Asset" Class="OnHireAsset" />
 </List>
 <ContentType Name="Asset Note" Class="BaseAssetNote"/>
 <ContentType Name="On-Hire Asset" Class="BaseOnHireAsset"/>
</Web>

Save the file, and then rerun SPMetal using the following command line (as before, this
command should be entered on one line):

%SPROOT%\bin\spmetal.exe /web:http://localhost/Chapter14/
customertemplate /code:HireSample.cs /parameters:SPMetalParameters.xml

Figure 14-4 Generated entity class diagram

Chapter 14 LINQ to SharePoint and SPMetal 357

P
a

rt
 I

V

If you now examine HireSample.cs, you’ll notice that the objects have been renamed as
specified in the parameters file. Figure 14-5 shows the new object model.

Incorporate a Build Script to Regenerate Entities Automatically
Rather than having to rerun SPMetal manually each time your data structure changes, you
can incorporate a build script into your Visual Studio project that calls SPMetal automatically
each time the project is built.

In Visual Studio, in the Project menu, select LinqSampleApplication Properties. In the
Properties pane, select Build Events, and then click the Edit Pre-Build button. In the dialog
that appears, enter the following script (in one continuous line; line breaks are added here
for readability):

%SPROOT%\bin\spmetal.exe /web:http://localhost/Chapter14/customertemplate
/code:"$(ProjectDir)HireSample.cs"
/parameters:"$(ProjectDir)SPMetalParameters.xml"

Build the project. You’ll notice that when the build has completed, you’re notified that
HireSample.cs has been modified. This confirms that the prebuild script has automatically
regenerated the file as part of the build process.

Figure 14-5 Revised entity class diagram

358 PART IV Data Access Layer

Adding Data Using LINQ
Our data structure consists of two lists, On-Hire Assets and Asset Notes, and a document
library, Hire Contracts. Recall from earlier chapters that the difference between a document
library and a list is the type of content contained in each. Document libraries contain
document-based content, and as a result, content types that are used in a document library
must be derived from the built-in Document content type. When we created our Hire
Contract content type, we based it on the Document content type to meet this requirement.
By using a Document content type, we’re dictating that all items must have an associated
document, and this presents a problem for LINQ.

LINQ to SharePoint is a data manipulation tool designed to deal with the actual data
that’s associated with an individual item. The entity classes are created based on the fields
defined in the associated content types as opposed to the properties of the object that
manages the content. For example, most data items in SharePoint are represented by the
object model as an SPListItem object. The SPListItem has many properties, such as Title,
Url, and UniqueId. None of these properties is mapped to an entity object for use by LINQ
to SharePoint; instead, LINQ to SharePoint focuses only on the values of the fields that are
associated with the SPListItem. As a result, it’s impossible to manipulate any properties of
an SPListItem object (or any other object) using LINQ to SharePoint. In the case of a
Document-based item, we can’t create an object using LINQ, because items stored in a
document library must have an associated file. Since File is a property of the SPListItem

object, we cannot set it via LINQ.
Since we can’t add documents to our document library using LINQ, we can write some

SharePoint code that makes use of the object model to insert some sample data quickly.

Add Data Generation Buttons to LinqSampleApplication
In the LinqSampleApplication project, open Form1.cs. From the toolbox, drag three
button controls, a textbox, and a label onto the design surface. The form designer should
look like this:

Add Sample Contracts
Double-click the Add Sample Contracts button to add some code for the on-click event,
and then add the following code:

private void button1_Click(object sender, EventArgs e)
 {
 //Add some sample data to the hire contracts document library

Chapter 14 LINQ to SharePoint and SPMetal 359

P
a

rt
 I

V

 //disable the button to prevent concurrency problems
 button1.Enabled = false;
 using (SPSite mySite = new SPSite(SiteUrl.Text))
 {
 using (SPWeb myWeb = mySite.OpenWeb())
 {
 for (int x = 0; x < 3; x++)
 {
 //Since we're not interested in the document contents,
 //create a simple text document
 string test = x.ToString("This is test contract" +
 " number 000");
 byte[] content = System.Text.Encoding.UTF8.GetBytes(test);

 //Get a reference to the Hire Contracts list

 SPList HireContracts=myWeb.Lists["Hire Contracts"];

 //Generate a sequential file name

 string filename=x.ToString("SampleContract000.txt");

 //Upload the file to the document library
 SPFile newFile = HireContracts.RootFolder.Files.Add(filename,
 content);

 //Get a reference to the SPListItem that is automatically
 //created when the document is uploaded

 SPListItem item =newFile.Item;

 //populate the mandatory fields with sample data

 item["ContractId"] = x.ToString("CONT-000");
 item["Contract Start Date"] = DateTime.Now.AddMonths(0-x);
 item["Contract End Date"] = DateTime.Now.AddMonths(x+12);

 //Persist the changes to the content database
 item.SystemUpdate();
 }
 }
 }
 //change the text on the button so that we know the job's done
 button1.Text += " - Done";
 }

As you’ll see from the comments, this code simply creates a few dummy Hire Contract
documents in our document library. Once the documents have been uploaded, the properties
are set using indexed properties on the SPListItem object. You’ll notice that the field
names and the name of the document are not strongly typed. This is the problem we
are addressing by using LINQ.

360 PART IV Data Access Layer

Add On-Hire Assets
Now that we have documents in our document library, we can move on and create list items
that refer to those documents. Double-click the Add On-Hire Assets button on the form
designer to add an on-click event handler. Add the following code:

private void button2_Click(object sender, EventArgs e)
{
 //Add some assets for our contracts
 //disable the button to prevent concurrency problems
 button2.Enabled = false;
 using(HireSampleDataContext dxWrite = new HireSampleDataContext(SiteUrl.Text))
 {
 //since we'll be making changes, we must set ObjectTrackingEnabled to true
 //This is the default value but is explicitly included here
 //for the sake of clarity
 dxWrite.ObjectTrackingEnabled=true;
 int counter = 0;
 //loop through the contracts in our Hire Contracts document library
 foreach (HireContract contract in dxWrite.HireContracts)
 {
 //Add new assets for each contract
 for (int x = 0; x < 3; x++)
 {
 OnHireAsset newAsset = new OnHireAsset();

 //generate sequential sample data
 newAsset.AssetId = counter.ToString("ASSET000");
 newAsset.AssetTag = counter.ToString("TAG-000");
 newAsset.ContractReference = contract;
 //set the new asset entity to be added into the OnHireAssets list
 dxWrite.OnHireAssets.InsertOnSubmit(newAsset);
 counter++;
 }
 }

 //Submit the changes. This will actually add the items to the list
 dxWrite.SubmitChanges();
 }
 //change the text on the button so that we know the job's done
 button2.Text += " - Done";
}

Notice first, and most importantly, that everything is strongly typed, meaning that if the
code contained any errors, it would not compile. Second, the code is much more descriptive
than the preceding example. It’s apparent which data entities we’re dealing with and what
actions we’re performing on them purely from the syntax of the code. Finally, as you’ll
remember from our data structure in Figure 14-2, each On-Hire Asset must have an
associated Hire Contract. In this code, the assignment of a parent Hire Contract is done
by simply assigning an appropriate HireContract entity to the ContractReference property
that defines the relationship. There’s no need to know exactly which field is used to define
the foreign key since all of that information is automatically determined by the configuration
of the lookup field.

Chapter 14 LINQ to SharePoint and SPMetal 361

P
a

rt
 I

V

Add AssetNotes
We’ve created sample contracts and associated assets; the next thing to add is Asset Notes
for each asset. Double-click the Add Asset Notes button to add an on-click event handler.
Add the following code:

private void button3_Click(object sender, EventArgs e)
{
 //disable the button to prevent concurrency problems
 button3.Enabled = false;

 //Add some notes for our sample assets
 using(HireSampleDataContext dxWrite = new HireSampleDataContext(SiteUrl.Text))
 {
 dxWrite.ObjectTrackingEnabled = true;
 foreach (OnHireAsset asset in dxWrite.OnHireAssets)
 {
 for (int x = 0; x < 3; x++)
 {
 AssetNote newNote = new AssetNote();

 newNote.LocationCode = x.ToString("Location000");
 newNote.AssetReference = asset;
 dxWrite.AssetNotes.InsertOnSubmit(newNote);
 }
 }
 dxWrite.SubmitChanges();
 }
 //change the text on the button so that we know the job's done
 button3.Text += " - Done";
}

You should now have a Windows Forms application with three buttons that can be used
to generate some sample data. Run the application, clicking each of the three buttons in
turn to add some sample data.

Deleting Data Using LINQ
Although we couldn’t use LINQ to add document items to a document library, we can use
LINQ to delete such items. Delete works because LINQ provides a DeleteOnSubmit method
that makes use of the unique identifier for the entity object to delete the corresponding
object from the data store.

Deleting Sample Data
Add a new button to the sample application and name it Delete Sample Data.

362 PART IV Data Access Layer

Add the following code in the on-click event handler:

private void button4_Click(object sender, EventArgs e)
{
 //disable the button to prevent concurrency problems
 button4.Enabled = false;

 using(HireSampleDataContext dxWrite = new HireSampleDataContext(SiteUrl.Text))
 {
 dxWrite.ObjectTrackingEnabled = true;
 //loop through the Hire Contracts
 foreach (HireContract contract in dxWrite.HireContracts)
 {
 //for each contract, loop through the assets
 foreach (OnHireAsset asset in contract.OnHireAsset)
 {
 //for each asset loop through the notes
 foreach (AssetNote note in asset.AssetNote)
 {
 //delete the note
 dxWrite.AssetNotes.DeleteOnSubmit(note);
 }
 //delete the asset
 dxWrite.OnHireAssets.DeleteOnSubmit(asset);
 }
 //finally delete the contract
 dxWrite.HireContracts.DeleteOnSubmit(contract);
 }

 dxWrite.SubmitChanges();
 }

 //change the text on the button so that we know the job's done
 button4.Text += " - Done";
}

It should be apparent from the comments that this code will delete all the sample data
that we created in the preceding code examples. It uses three nested loops to ensure that
referential integrity is maintained, and all associated child data is deleted before the parent
element is deleted.

Ensuring Referential Integrity
Since we defined relationships for which participation was mandatory—that is, each
child object must have a parent object—you may wonder why the child objects were not
automatically deleted when the parent was removed, because removing the parent object
while leaving the child would clearly leave the data set in an invalid state. In relational
database terms, this is a fundamental requirement to ensure referential integrity.

In SharePoint, applying referential integrity constraints on a lookup field is optional.
Where no constraints are applied, it is possible to delete parent objects without cascading
deletes to child objects or even raising an error to indicate that such a delete would
invalidate the data structure. At the time of writing, when using SharePoint Designer

Chapter 14 LINQ to SharePoint and SPMetal 363

P
a

rt
 I

V

2010 Beta 2 to create lookup columns, there is no option to configure referential integrity
options. Of course, this issue may be resolved by the time this book goes to print.

Programmatically Configure Referential Integrity Options
For the moment, we can set referential integrity options using only the SharePoint user
interface or programmatically. Let’s consider the programmatic option first. Add another
button to the sample application and name it Enforce Integrity Checks. In the on-click event
handler, add the following code:

private void button5_Click(object sender, EventArgs e)
{
 //disable the button to prevent concurrency problems
 button5.Enabled = false;

 using (SPSite mySite = new SPSite(SiteUrl.Text))
 {
 using (SPWeb myWeb = mySite.OpenWeb())
 {
 //Get a reference to the On-Hire Assets list
 SPList assets = myWeb.Lists["On-Hire Assets"];

 SPFieldLookup contractRef;
 contractRef = assets.Fields["Contract Reference"] as SPFieldLookup;

 //there are three options for relationship delete behaviour:
 //None - the default, when this option is select referential
 // integrity is not enforced
 //Cascade - where a parent object is deleted, all child objects
 // are automatically deleted
 //Restrict - where an attempt is made to delete a parent object
 // without first deleting child objects, an
 // exception is raised

 contractRef.RelationshipDeleteBehavior = SPRelationshipDeleteBehavior.Restrict;

 //in order to enforce referential integrity, the lookup
 //column must be indexed
 contractRef.Indexed = true;

 contractRef.Update();

 //Get a reference to the Asset Notes list
 SPList notes = myWeb.Lists["Asset Notes"];

 SPFieldLookup assetRef;
 assetRef = notes.Fields["Asset Reference"] as SPFieldLookup;

 assetRef.RelationshipDeleteBehavior = SPRelationshipDeleteBehavior.Restrict;
 assetRef.Indexed = true;
 assetRef.Update();

 }
 }

 //change the text on the button so that we know the job's done
 button5.Text += " - Done";
}

364 PART IV Data Access Layer

This code updates the lookup column properties to enforce referential integrity by
throwing an exception if an attempt is made to delete a parent object while child objects
still exist. The other option for ensuring referential integrity is to cascade deletes automatically.
In that case, when a parent object is deleted, any child objects are also automatically deleted.

To see the effects of this change, review the code for the Delete Sample Data button.
Either comment out or delete the middle loop so that the code reads as follows:

private void button4_Click(object sender, EventArgs e)
{
 //disable the button to prevent concurrency problems
 button4.Enabled = false;

 using(HireSampleDataContext dxWrite = new HireSampleDataContext(SiteUrl.Text))
 {
 dxWrite.ObjectTrackingEnabled = true;
 //loop through the Hire Contracts
 foreach (HireContract contract in dxWrite.HireContracts)
 {
 //for each contract, loop through the assets
 foreach (OnHireAsset asset in contract.OnHireAsset)
 {
 //delete the asset
 dxWrite.OnHireAssets.DeleteOnSubmit(asset);
 }
 //finally delete the contract
 dxWrite.HireContracts.DeleteOnSubmit(contract);
 }

 dxWrite.SubmitChanges();
 }

 //change the text on the button so that we know the job's done
 button4.Text += " - Done";
}

Run the sample application, re-creating the sample data first if you’ve deleted it. This
time, before clicking the Delete Sample Data button, click the Enforce Integrity Checks
button to apply our constraints. When you click the Delete Sample Data button, an exception
will be thrown, as illustrated. Furthermore, if you stop execution of the sample application
and check your data in the SharePoint user interface, you’ll find that no changes have
been made.

Chapter 14 LINQ to SharePoint and SPMetal 365

P
a

rt
 I

V

Configure Referential Integrity Options Using the User Interface
You’ve seen how to enforce constraints on lookup fields programmatically. Let’s now look
at how this can be done using the SharePoint user interface. Navigate to the Asset Notes list
using Internet Explorer. From the ribbon, under List Tools, select List | List Settings. In the
page that appears, find the Columns section, and then select Asset Reference. You should
now see the Change Column page:

At the bottom of the page is a Relationship section with option buttons for restricting
and cascading delete and a checkbox to enable or disable referential integrity. The options
are currently set as specified by the code in our sample application; however, so that our
Delete Sample Data function works properly, we need to change the selected option from
Restrict Delete to Cascade Delete. Make the change and click OK to save it.

Run the sample application. As before, click the Delete Sample Data button. This time,
the function completes without error, and a quick check of the lists using Internet Explorer
will confirm that all data has been deleted as expected.

Querying Data Using LINQ to SharePoint
One of the primary functions of LINQ is querying data. In this section, we’ll dig a little deeper
into how LINQ works before looking at how to retrieve data using LINQ to SharePoint.

366 PART IV Data Access Layer

Query Limitations
As you saw earlier, LINQ works by passing lambda expressions to extension methods that
have been declared to extend the IEnumerable and IEnumerable<T> interfaces. By chaining
together these extension methods, you can create complex queries, all with compile-time
syntax checking and type-safe return values. Earlier we looked at LINQ to Objects as a
simple starting point to discuss how LINQ works. In the case of LINQ to Objects, parsing
queries is relatively straightforward since the objects are in memory and LINQ is simply
being used as a shortcut for more traditional programming techniques. Ultimately, behind
the scenes, LINQ to Objects simply expands the query into the more verbose code that we
would have written in a non-LINQ world.

There is one major difference between LINQ to Objects and LINQ to SharePoint,
however, and that is the location of the data being queried. For LINQ to SharePoint, the
data exists not in memory—as is the case for LINQ to Objects—but in the SharePoint
content database. Because of this, LINQ to SharePoint has to work a bit harder in parsing
the LINQ queries. Rather than simply expanding the queries, the parser must convert them
to a syntax that can be used to query the SharePoint content database directly. Since the
SharePoint platform defines its own query language in the form of the XML dialect CAML,
LINQ to SharePoint must translate all LINQ queries into CAML. These CAML queries can
then be processed directly by the SharePoint platform. Once the results are returned, they
are mapped onto strongly typed entity objects, which are then returned as the query results.

Expression Trees
It’s worthwhile for you to understand how this process works, because it has implications
when it comes to creating more complex queries—as you’ll see later. To find out a bit more,
let’s start with one of the extension methods that we’d commonly use in a LINQ query. If
we examine the Where extension method in more detail, we find the following method
signature:

public static IQueryable<TSource> Where<TSource>(this IQueryable<TSource>
source, Expression<Func<TSource, bool>\> predicate)

At first glance, you may think there’s too much information in this statement and
decide to skip ahead a few paragraphs—but bear with me, because only one part of the
signature is actually important for the purposes of this discussion.

The method accepts two parameters: the first being an IQueryable data source and the
second being a generic Expression object of type Func. The Func object is a delegate that
references the code that’s been entered as the lambda expression, and this is passed as a
parameter to the Expression object. The Expression object, however, converts the lambda
expression into an ExpressionTree. The ExpressionTree is where the magic that is LINQ
takes place. By using expression trees, you can programmatically analyze lambda expressions.
As a result, you can convert compiled expressions into something completely different by
applying logic to the expression tree. By using this process, LINQ to SharePoint converts
the lambda expressions that make up a query into valid CAML syntax that can then be

Chapter 14 LINQ to SharePoint and SPMetal 367

P
a

rt
 I

V

directly executed against the content database. (As an aside, this is exactly the same way
that LINQ to SQL works—the only difference is the target query syntax.)

All very interesting, you may be thinking, but why is this relevant? Well, here’s the thing:
Many extension methods are defined for LINQ, they all have a default implementation in
LINQ to Objects, and it’s down to the creator of a new LINQ provider to override them
with a platform-specific implementation. However, CAML doesn’t support all the available
extension methods. Some things in there simply can’t be translated into CAML. In other
implementations such as LINQ to SQL, where a method can’t be implemented directly in
SQL, the standard LINQ to Objects method is used, meaning that a portion of the query
is performed using SQL, the results are then loaded into memory, and any remaining
operations are performed using LINQ to Objects extension methods. Of course, this is
all done behind the scenes and is completely transparent to the user.

The issue with LINQ to SharePoint is that CAML is a very limited language when
compared to SQL, and as such a significant number of the standard LINQ operations are
not possible. If such operations were left to revert to their default implementation in LINQ
to Objects, significant performance issues could result due to the amount of in-memory
processing that could be required. Without an in-depth understanding of how LINQ works,
an uninitiated developer could easily create a LINQ query that, if executed concurrently by
many users, could severely degrade system performance.

Inefficient Queries
At the time of writing, this problem has been highlighted by having the LINQ to SharePoint
provider throw an error if an unimplemented extension method is used in a query. In previous
versions, this behavior could be controlled by setting the AllowInefficientQueries flag on the
DataContext object; however, the current version—at the time of writing, Beta 2—no longer
allows this flag to be publically altered and therefore unimplemented expressions will not
work with LINQ to SharePoint. This may change in future releases of the product.

The following extension methods are considered inefficient due to inability to convert
to CAML and are therefore not implemented by LINQ to SharePoint:

Aggregate All Any Average Distinct ElementAt

ElementAtOrDefault Except Intersect Join Max Min

Reverse SequenceEqual Skip SkipWhile Sum

Performing a Simple Query
Now that I’ve discussed the dos and don’ts of LINQ to SharePoint, let’s get started on
creating a few queries using our sample application.

We’ll extend our user interface to make it easier to view our results and the CAML
that’s being generated behind the scenes. On Form1.cs in LinqSampleApplication, add a
SplitContainer under the buttons that we added earlier. Set it to anchor to all sides. Within
the left panel, drop a WebBrowser control, and set its Dock property to Fill. In the right

368 PART IV Data Access Layer

panel, drop a DataGridView control, and set its Dock property to Fill. Add another button
next to those created earlier, and label the button Basic Query. Once you’ve finished, your
form should look like this:

In the on-click event handler for the Basic Query button, add the following code:

private void button6_Click(object sender, EventArgs e)
{
 using(HireSampleDataContext dxRead = new HireSampleDataContext(SiteUrl.Text))
 {

 //create a stringbuilder to store the CAML query
 StringBuilder sb = new StringBuilder();

 using (StringWriter logWriter = new StringWriter(sb))
 {
 //log the generated CAML query to a StringWriter
 dxRead.Log = logWriter;

 //Since we're only reading data, disabling object tracking
 //will improve performance
 dxRead.ObjectTrackingEnabled = false;

 var basicQuery = from c in dxRead.HireContracts
 where c.ContractStartDate.Value < DateTime.Now
 orderby c.ContractStartDate
 select c;

 //DataGridView can't bind to IEnumerable. Calling ToList
 //executes the query and returns a generic List
 dataGridView1.DataSource = basicQuery.ToList();
 }
 //create a temporary file for the generated CAML
 string fileName = Path.Combine(Path.GetTempPath(), "tmpCaml.xml");

Chapter 14 LINQ to SharePoint and SPMetal 369

P
a

rt
 I

V

 XmlDocument doc = new XmlDocument();
 doc.LoadXml(sb.ToString());
 doc.Save(fileName);

 //point the browser control to the temporary generated CAML file
 webBrowser1.Navigate(fileName);
 }
}

Notice a few interesting things about this code sample. First, notice the use of the Log

property on the DataContext object. When a TextWriter object is assigned to this property,
the CAML that is generated by the LINQ provider will be output to the TextWriter when it
is executed. In this sample, we’ve made use of that functionality to generate a temporary
XML file that we can view using our WebBrowser control.

Another thing to highlight is the ObjectTrackingEnabled flag: since we’re planning to
execute queries only using this DataContext, setting this flag to false will improve performance,
because the provider doesn’t need to track references to the underlying SPListItem objects
that are represented by the result set.

Finally, the last thing to note is the use of the ToList extension method when assigning
the query as the data source for our DataGridView. LINQ queries are not actually executed
until the result set is enumerated. Since the DataGridView control doesn’t support the
IEnumerable interface for data sources, the result set is never enumerated, and therefore
the query is never executed. The ToList extension method enumerates the result set to
convert the results into a generic list; this list is then passed to the DataGridView, enabling
us to view the results in the user interface.

Running the sample application and then clicking the Basic Query button should yield
the following result:

370 PART IV Data Access Layer

Result Shaping Using LINQ
One of the benefits of LINQ is its ability to shape result sets while still retaining a type-safe
output. We can explore this functionality by adding another button to our sample application;
this time, label it Basic Result Shaping and add the following code:

private void button7_Click(object sender, EventArgs e)
{
 using(HireSampleDataContext dxRead = new HireSampleDataContext(SiteUrl.Text))
 {

 //create a stringbuilder to store the CAML query
 StringBuilder sb = new StringBuilder();

 using (StringWriter logWriter = new StringWriter(sb))
 {
 //log the generated CAML query to a StringWriter
 dxRead.Log = logWriter;

 dxRead.ObjectTrackingEnabled = false;

 var basicQuery = from c in dxRead.HireContracts
 where c.ContractStartDate.Value < DateTime.Now
 orderby c.ContractStartDate
 select new{
 c.ContractId,
 c.ContractStartDate,
 c.ContractEndDate,
 Creator = c.DocumentCreatedBy.Substring(
 c.DocumentCreatedBy.LastIndexOf(‘\\')+1),
 Version = "v" + c.Version.Value.ToString("0.000")
 };

 dataGridView1.DataSource = basicQuery.ToList();
 }

 string fileName = Path.Combine(Path.GetTempPath(), "tmpCaml.xml");

 XmlDocument doc = new XmlDocument();
 doc.LoadXml(sb.ToString());
 doc.Save(fileName);

 //point the browser control to the temporary generated CAML file
 webBrowser1.Navigate(fileName);
 }
}

Notice the creation of a new anonymous type as part of the LINQ query. The new type
consists of fields from the returned entity together with some string manipulation functions
to get the results into the appropriate format.

Notice when examining the generated CAML for this query that the string manipulations
have not been translated. Although CAML does not support these operations, the LINQ to
SharePoint provider still allows them as part of the query because they are performed on the
results and are therefore unlikely to cause significant performance issues.

Chapter 14 LINQ to SharePoint and SPMetal 371

P
a

rt
 I

V

Joining Tables Using LINQ
You may have noticed in the preceding code that the Join extension method is included in
the list of inefficient extension methods earlier in the chapter and as such is not permitted
within LINQ to SharePoint. However, this does not mean that retrieving related data isn’t
possible, only that arbitrary joins are not supported. Where the relationship between two
entities is defined by a lookup column, retrieving related data is permitted and in fact is
actually achieved using a much simpler syntax than is required by the Join operator.

Simple Join
Let’s add a new button to enable us to execute a basic join query. Label the button Basic
Join Query and in the event handler add the following code:

private void button8_Click(object sender, EventArgs e)
{
 using(HireSampleDataContext dxRead = new HireSampleDataContext(SiteUrl.Text))
 {
 StringBuilder sb = new StringBuilder();

 using (StringWriter logWriter = new StringWriter(sb))
 {
 //log the generated CAML query to a StringWriter
 dxRead.Log = logWriter;

 dxRead.ObjectTrackingEnabled = false;

 var basicQuery = from a in dxRead.OnHireAssets
 where a.ContractReference.ContractStartDate.Value
 < DateTime.Now
 orderby a.AssetTag,
 a.ContractReference.ContractStartDate
 select new
 {
 a.AssetTag,
 a.AssetId,
 a.ContractReference.ContractId,
 a.ContractReference.ContractStartDate,
 a.ContractReference.ContractEndDate
 };

 dataGridView1.DataSource = basicQuery.ToList();
 }

 //create a temporary file for the generated CAML
 string fileName = Path.Combine(Path.GetTempPath(), "tmpCaml.xml");

 XmlDocument doc = new XmlDocument();
 doc.LoadXml(sb.ToString());
 doc.Save(fileName);

 //point the browser control to the temporary generated CAML file
 webBrowser1.Navigate(fileName);
 }
}

372 PART IV Data Access Layer

From this code example, you can see that the join is performed by making use of the
lookup field. Within the LINQ query, the lookup field is of the same type as the item to
which it refers. In this case, the ContractReference lookup field is implemented as a
property of type HireContract. This allows you to deal with entity objects within a logical
hierarchy, ignoring the underlying data structure implementation. This is much simpler
than the Join extension method syntax, which relies on your knowledge of the data
structure to know which tables to join together and which fields to use for the join.

Complex Join
Using this syntax, you can join multiple lists together as long as appropriate lookup fields
have been defined. To explore this, we’ll add another button, this time labeled Complex Join
Query with the following code:

private void button9_Click(object sender, EventArgs e)
{
 using(HireSampleDataContext dxRead = new HireSampleDataContext(SiteUrl.Text))
 {

 StringBuilder sb = new StringBuilder();

 using (StringWriter logWriter = new StringWriter(sb))
 {
 //log the generated CAML query to a StringWriter
 dxRead.Log = logWriter;

 dxRead.ObjectTrackingEnabled = false;

 var basicQuery = from n in dxRead.AssetNotes
 where int.Parse(n.LocationCode.Substring(8))==2
 && n.AssetReference.ContractReference.ContractStartDate.Value
 < DateTime.Now
 orderby n.LocationCode,
 n.AssetReference.AssetId,
 n.AssetReference.ContractReference.ContractStartDate
 select new
 {
 n.LocationCode,
 n.AssetReference.AssetTag,
 n.AssetReference.AssetId,
 n.AssetReference.ContractReference.ContractId,
 n.AssetReference.ContractReference.ContractStartDate,
 n.AssetReference.ContractReference.ContractEndDate
 };

 dataGridView1.DataSource = basicQuery.ToList();
 }

 //create a temporary file for the generated CAML
 string fileName = Path.Combine(Path.GetTempPath(), "tmpCaml.xml");

 XmlDocument doc = new XmlDocument();
 doc.LoadXml(sb.ToString());
 doc.Save(fileName);

Chapter 14 LINQ to SharePoint and SPMetal 373

P
a

rt
 I

V

 //point the browser control to the temporary generated CAML file
 webBrowser1.Navigate(fileName);
 }
}

In this sample, we’ve joined all three lists together and have also performed some string
processing as part of the Where clause. You’ll notice from the generated CAML that the
Location Code filter is not included in the query; that’s because the LINQ provider brings
back the resulting rows and then programmatically applies the additional filter in memory
before returning the results. Again, this can be done efficiently because only one CAML
query is required, so the resource usage is minimal.

Combining LINQ to SharePoint and LINQ to Objects
Although the join syntax in LINQ to SharePoint is very powerful, in some situations you
won’t be able to retrieve the data that you need using this syntax. Some operations that you
require are not permitted on the LINQ to SharePoint provider, because they are considered
inefficient.

Performing an In-Memory Subquery
Here’s an example of an in-memory subquery: Suppose that our sample application
requires a list of asset tags and locations codes for a particular contract, but only where the
locations are also being used to store assets that are subject to another contract. If you were
writing this query using SQL, it would be relatively straightforward—something along the
lines of this:

SELECT AssetTag, LocationCode
FROM AssetNotes as n
INNER JOIN OnHireAssets as a
ON A.AssetId=n.AssetId
INNER JOIN HireContracts as c
ON c.ContractId=a.ContractId
WHERE n.LocationCode in (
SELECT LocationCode
FROM AssetNotes as n1
INNER JOIN OnHireAssets as a1
ON a1.AssetId=n1.AssetId
INNER JOIN HireContracts as c1
On c1.ContractId=a1.ContractId
Where c1.ContractId=CONT-002'
)
AND c.ContractId='CONT-001'

OK—maybe this is not that straightforward with all the joins, but you get the picture. You
could use a subquery to filter the results to suit your requirements.

Unsurprisingly, given its similarity to SQL, LINQ syntax also supports a similar operation.
Let’s use our sample application to try it out. As usual, add a new button, label it Sub Query
and add the following code:

private void button10_Click(object sender, EventArgs e)
{

374 PART IV Data Access Layer

 using(HireSampleDataContext dxRead = new HireSampleDataContext(SiteUrl.Text))
 {

 StringBuilder sb = new StringBuilder();

 //since we-re using subqueries, more than one CAML query
 //will be generated.
 //add a root element to ensure that the logged output is valid XML
 sb.Append("<Queries>");

 using (StringWriter logWriter = new StringWriter(sb))
 {
 //log the generated CAML query to a StringWriter
 dxRead.Log = logWriter;

 dxRead.ObjectTrackingEnabled = false;

 var subquery=from note2 in dxRead.AssetNotes
 where note2.AssetReference.ContractReference.ContractId
 == "CONT-002"
 select note2.LocationCode;

 var results = from note in dxRead.AssetNotes
 where note.AssetReference.ContractReference.ContractId
 == "CONT-001"
 && subquery.Contains(note.LocationCode)
 select new
 {
 note.AssetReference.AssetTag,
 note.LocationCode
 };

 dataGridView1.DataSource = results.ToList();
 }

 sb.Append("</Queries>");

 //create a temporary file for the generated CAML
 string fileName = Path.Combine(Path.GetTempPath(), "tmpCaml.xml");

 XmlDocument doc = new XmlDocument();
 doc.LoadXml(sb.ToString());
 doc.Save(fileName);

 //point the browser control to the temporary generated CAML file
 webBrowser1.Navigate(fileName);
 }
}

In this code sample, we’ve defined the subquery, and then used it within the main query.
I’ve split up the queries for the sake of clarity; LINQ syntax allows you to combine them
within a single query if required.

Chapter 14 LINQ to SharePoint and SPMetal 375

P
a

rt
 I

V

When you run this query using the sample application, an exception will be thrown,
because the LINQ to SharePoint parser can’t convert the statement into CAML, because
the CAML syntax doesn’t support subqueries. However, it is still possible to execute this
query by making a small modification. Modify the subquery declaration to render the
results to a List, as follows:

var subquery=(from note2 in dxRead.AssetNotes
 where note2.AssetReference.ContractReference.ContractId
 == "CONT-002"
 select note2.LocationCode).ToList();

This time, clicking the Sub Query button will return the expected result set, and an
examination of the generated CAML queries will reveal that two queries were generated.
The first query corresponds to the subquery and the second corresponds to the main query
without the inclusion of the subquery.

So how does this work? Using ToList in the definition of the subquery forces the query
to be executed immediately, returning the results as a generic list. The generic List object
implements IEnumerable<T> and can therefore be used within a LINQ expression. The
main LINQ query then performs the subquery using LINQ to Objects as opposed to LINQ
to SharePoint, yielding the expected results. In effect, adding ToList to a query allows you
to process the results using the full power of LINQ to Objects. However, as discussed earlier,
this approach has drawbacks, and efficiency must be given serious thought before you
adopt this technique.

Updating Information Using LINQ to SharePoint
LINQ provides an efficient, transactional way to update data. Either all modifications made
to a given data context are applied or all are rolled back. The update process also supports
checking for concurrent updates, allowing for long-running processes to create and hold
references to disconnected entity objects without the overhead of maintaining references
to heavyweight objects such as SPWeb and SPSite.

Disconnecting Entities
To see disconnected entities in action, let’s add another button to our sample application.
Label the button Update and Disconnect, and add the following code:

//Define a member variable to store the query
IQueryable<AssetNote> _basicQuery;

private void button11_Click(object sender, EventArgs e)
{
 using(HireSampleDataContext dxWrite = new HireSampleDataContext(SiteUrl.Text))
 {

 StringBuilder sb = new StringBuilder();

 sb.Append("<Queries>");

376 PART IV Data Access Layer

 using (StringWriter logWriter = new StringWriter(sb))
 {
 dxWrite.Log = logWriter;

 //Since we're updating data, object tracking must be enabled
 dxWrite.ObjectTrackingEnabled = true;

 _basicQuery = from n in dxWrite.AssetNotes
 select n;

 foreach (var n in _basicQuery)
 {
 //Edit each location code
 n.LocationCode += "-Edit";
 }

 //disconnect from the datacontext
 //remove the logger to prevent problems when the reference
 //is missing on reconnect
 dxWrite.Log = null;
 dxWrite.Dispose();

 dataGridView1.DataSource = _basicQuery.ToList();
 }

 sb.Append("</Queries>");

 //create a temporary file for the generated CAML
 string fileName = Path.Combine(Path.GetTempPath(), "tmpCaml.xml");

 XmlDocument doc = new XmlDocument();
 doc.LoadXml(sb.ToString());
 doc.Save(fileName);

 //point the browser control to the temporary generated CAML file
 webBrowser1.Navigate(fileName);
 }
}

Notice a few important things in this code. First, a member variable is required to store
the updated entities between function calls. Second, it’s important that you disconnect the
DataContext object properly. If a logger is attached to the DataContext, the logger must
be detached before disposing of the DataContext; otherwise, an error will occur when the
entities attempt to reconnect, since the DataContext entity has an internal reference to
the logger. This issue may be resolved in the final version of the code.

Reconnecting Entities
Now that we have created some code to update items and disconnect the updated entities,
we need some code to reconnect the entities and save the changes. Before we do that, we
need to consider error handling for our sample application.

Since we have the facility to create disconnected updates, it’s possible that another user
will change an item that we have disconnected before our update has been applied. Indeed,

Chapter 14 LINQ to SharePoint and SPMetal 377

P
a

rt
 I

V

even if our update was not performed in a disconnected manner and was made in near
real-time, the web-based nature of the SharePoint platform means that it is still likely that
data will have changed before the update completes.

As mentioned earlier in this chapter, LINQ to SharePoint provides functionality to deal
with this type of error via the ChangeConflicts property of the DataContext object. So that
we can see the ChangeConflicts property in action in our sample application, we need to
make a few changes to the user interface:

 1. In the form designer, un-dock the DataGridView from the SplitContainer and add a
second SplitContainer in the right pane.

 2. Set the Orientation of this new SplitContainer to Horizontal.

 3. In the top pane of the new SplitContainer, place the original DataGridView control,
and again set the Dock property to Fill.

 4. Drag a new, second DataGridView onto the bottom pane of the new SplitContainer.

 5. Again, set the Dock property of this new DataGridView to Fill.

Once you’ve made these changes, add a new button labeled Reconnect and Save. Your
updated form should look like this:

Double-click the Reconnect and Save button and in the code file add the following:

private void button12_Click(object sender, EventArgs e)
{
 using(HireSampleDataContext dxWrite = new HireSampleDataContext(SiteUrl.Text))
 {
 StringBuilder sb = new StringBuilder();

 sb.Append("<Queries>");

 using (StringWriter logWriter = new StringWriter(sb))
 {

 dxWrite.Log = logWriter;

378 PART IV Data Access Layer

 //Since we’re updating data, object tracking must be enabled
 dxWrite.ObjectTrackingEnabled = true;

 foreach (var n in _basicQuery)
 {
 dxWrite.AssetNotes.Attach(n);
 }

 //always define a catch for ChangeConflictException
 try
 {
 dxWrite.SubmitChanges();
 }
 catch (ChangeConflictException ex)
 {
 //bind any conflicts to a data grid so that we can see them
 dataGridView2.DataSource = dxWrite.ChangeConflicts.ToList();
 }

 dataGridView1.DataSource = _basicQuery.ToList();
 }

 sb.Append("</Queries>");

 string fileName = Path.Combine(Path.GetTempPath(), "tmpCaml.xml");

 XmlDocument doc = new XmlDocument();
 doc.LoadXml(sb.ToString());
 doc.Save(fileName);

 webBrowser1.Navigate(fileName);
 }

}

Notice the try/catch block around the SubmitChanges statement. You should always
define a handler for the ChangeConflictException since, by its very nature, the exception
can occur any time an item is updated. In this sample code, the exception is handled by
displaying the resulting conflicts in our user interface.

We can use the two new buttons that we added to simulate a disconnected update.
First, click the Update and Disconnect button to make updates to a set of records. Using
the SharePoint user interface, verify that the updates have not yet been applied to the list.
Then go back to the sample application and click Reconnect and Save. This time, checking
the SharePoint user interface will confirm that the updates have been applied as expected.

Handling Concurrency Errors when Updating Data
Let’s add another button to our sample application so that we can simulate concurrent
updates. Label the button Concurrent Update and add the following code in the on-click
event handler:

Chapter 14 LINQ to SharePoint and SPMetal 379

P
a

rt
 I

V

private void button13_Click(object sender, EventArgs e)
{
 using(HireSampleDataContext dxWrite = new HireSampleDataContext(SiteUrl.Text))
 {
 //Disable deferred loading, so that all data is
 //loaded when the query is parsed
 dxWrite.DeferredLoadingEnabled = false;

 StringBuilder sb = new StringBuilder();

 sb.Append("<Queries>");

 using (StringWriter logWriter = new StringWriter(sb))
 {
 dxWrite.Log = logWriter;

 dxWrite.ObjectTrackingEnabled = true;

 _basicQuery = from n in dxWrite.AssetNotes
 select n;

 //enumerate the query to populate the entity objects
 //with the current data
 foreach (var n in _basicQuery)
 {
 //Edit each location code
 n.LocationCode += "-Edit";
 }

 //Perform a concurrent update
 using(HireSampleDataContext dxWrite2 =
 new HireSampleDataContext(SiteUrl.Text))
 {
 var concurrentQuery = from n in dxWrite2.AssetNotes
 select n;

 foreach (var n in concurrentQuery)
 {
 n.LocationCode = n.LocationCode += "-Concurrent";
 }

 dxWrite2.SubmitChanges();
 }

 try
 {
 dxWrite.SubmitChanges();
 }
 catch (ChangeConflictException)
 {
 //bind any conflicts to a data grid so that we can see them
 dataGridView2.DataSource = dxWrite.ChangeConflicts.ToList();
 }

380 PART IV Data Access Layer

 dxWrite.Log = null;

 dataGridView1.DataSource = _basicQuery.ToList();
 }

 sb.Append("</Queries>");

 //create a temporary file for the generated CAML
 string fileName = Path.Combine(Path.GetTempPath(), "tmpCaml.xml");

 XmlDocument doc = new XmlDocument();
 doc.LoadXml(sb.ToString());
 doc.Save(fileName);

 webBrowser1.Navigate(fileName);
 }
}

Notice a few significant aspects of this sample code: First, notice the introduction of the
DeferredLoadingEnabled property. By default, deferred loading is enabled on a DataContext

object. This means that child entities are loaded dynamically if and when they are required.
So, for example, our LINQ query returns a collection of AssetNote objects. Each AssetNote

object has an AssetReference property that refers to an OnHireAsset object. Since the
OnHireAsset object is not used by the query, it isn’t loaded until it’s required. Our
code doesn’t need this property, so to prevent it from being loaded we’ve set
DeferredLoadingEnabled to false.

Next, a separate DataContext object has been used to simulate a concurrent update,
because if we were to use the same DataContext object to attempt a concurrent update, the
DataContext object itself would merge the updates internally, resolving the concurrency issue.
Internally, the DataContext object uses a dictionary type object known as the EntityTracker to
manage all changes that have occurred to entities attached to the DataContext. Attempting
to apply concurrent updates to the same DataContext would effectively be handled internally
by the EntityTracker.

By using a second DataContext object, when SubmitChanges is called, the changes are
committed to the content database. This is significant because each entity implements an
interface named ITrackOriginalValues, and this interface defines an OriginalValues Dictionary

object that is used to store the values of each property when the entity is created. A change
conflict occurs when the original value for a property does not match the current content
database value before an item is updated.

By clicking the Concurrent Update button, you’ll see that an error row appears in the
lower DataGridView, similar to the illustration. Checking the contents of the Asset Notes list
using the SharePoint user interface will confirm that, other than the simulated concurrent
update of adding “–Concurrent” to each location code, no other updates have been performed.
In effect, the change conflict has aborted any additional changes.

Chapter 14 LINQ to SharePoint and SPMetal 381

P
a

rt
 I

V

You may be wondering why there is only one row in the ChangeConflicts data grid.
Earlier, when we covered the properties and methods of the DataContext object, we found
that SubmitChanges has three overloads. The overload that our sample code uses does not
specify a value for ConflictMode and so the default value of ConflictMode.FailOnFirstConflict

has been used. This is the reason for us only seeing one conflict. As soon as the first conflict
is found, the update is aborted and all changes are rolled back.

So that we can see all of the change conflict messages, we can change the SubmitChanges

method call to this:

dxWrite.SubmitChanges(ConflictMode.ContinueOnConflict);

Rerunning the application will now show all the conflicts in the lower DataGridView.
As before, checking the list using the SharePoint user interface will confirm that no changes
have actually been made. By setting ConflictMode to ContinueOnConflict, we’ve instructed
the LINQ to SharePoint provider to attempt all updates before rolling back the changes if
any conflicts occurred.

Resolving Change Conflicts
Alerting users to change conflicts would be pretty pointless if there was no way to resolve
the conflicts in question. There are a few approaches that we can take when resolving
change conflicts.

382 PART IV Data Access Layer

Resolving Conflicts Globally
The LINQ to SharePoint provider makes resolving conflicts a relatively painless process.
The ChangeConflicts property of the DataContext object returns a reference to an object
of type ChangeConflictCollection. This object provides a ResolveAll method that can be
called to resolve all conflicts. What could be simpler?

The ResolveAll method has three overloads:

ResolveAll()• This overload is used when the default resolution behavior is
acceptable. Effectively, this is the same as calling ResolveAll with the RefreshMode

parameter set to KeepChanges and the autoResolveDeletes parameter set to true.

ResolveAll(RefreshMode)• This overload is used when a RefreshMode setting of
KeepChanges is not appropriate.

ResolveAll(RefreshMode, Boolean)• This overload is used when delete conflicts
should not be automatically resolved. The Boolean parameter is a flag that
determines whether or not to delete conflicts that should be resolved automatically.
By allowing delete conflicts to be automatically resolved, any delete conflicts are
effectively ignored. This behavior makes sense, because the item to be updated
no longer exists, so other than notifying the user, no other options are available.
Setting this value to false will cause an InvalidOperationException to be thrown
if any delete conflicts exist when ResolveAll is called.

The ResolveAll methods make use of a RefreshMode enumeration to specify how
conflicts should be resolved. The enumeration has three possible values:

KeepChanges• When this option is selected for the RefreshMode parameter of the
ResolveAll method, any updated values are maintained even if they conflict with
the current database values. All other values that were not specifically updated are
changed to match the current database values. In effect, this option merges fields
that were specifically updated with the latest values in the database.

KeepCurrentValues • When this option is selected for the RefreshMode parameter
of the ResolveAll method, all field values are applied regardless of whether they
match the current database values. In effect, this option disregards all concurrent
changes, overwriting them with the current state of the object being updated.

OverwriteCurrentValues • When this option is selected for the RefreshMode

parameter of the ResolveAll method, all field values are updated to reflect the
current state of the database. Any updates that do not correspond with the current
state are lost. This option disregards any changes, replacing all values with the
current values from the database.

To see the effects of calling ResolveAll, change the sample code for the Concurrent
Update button to this:

retry:
 try
 {
 dxWrite.SubmitChanges(ConflictMode.ContinueOnConflict);
 }

Chapter 14 LINQ to SharePoint and SPMetal 383

P
a

rt
 I

V

 catch (ChangeConflictException)
 {
 //bind any conflicts to a data grid so that we can see them
 dataGridView2.DataSource = dxWrite.ChangeConflicts.ToList();
 dxWrite.ChangeConflicts.ResolveAll();
 goto retry;
 }

You’ll notice that after the ResolveAll method is called, a call to SubmitChanges must
again occur to retry the changes. Running the sample application and clicking the Concurrent
Update button now returns the same list of change conflicts—but this time each conflict is
flagged as resolved. Also, checking the Asset Notes list using the user interface will confirm
that all updates have been applied. Try re-running this test to see the operation of the other
RefreshMode options.

Resolving Conflicts Individually
I’m sure you’ll agree that the ResolveAll method works well when you need to resolve all
conflicts en masse, but what happens if you want to apply different rules to some of the
conflicts? Or what if you want to apply different rules to specific fields? The LINQ to
SharePoint conflict resolution model allows for this behavior.

And what if you want to go further? What if you want to handle change conflicts on
a field-by-field basis? Again, the LINQ to SharePoint provider allows for this.

Record Level Conflict Resolution Along with a ResolveAll method on the
ChangeConflictCollection object, which allows you to resolve all conflicts on all objects
with one method call, is a Resolve method on the ObjectChangeConflict object. As
mentioned earlier, the ObjectChangeConflict object represents a change conflict for a
single entity. Remember that in relational database parlance, an entity corresponds to a
record. By selecting specific ObjectChangeConflict objects from the ChangeConflictCollection,
you can apply different resolution options for each record.

For example, if you wanted to ignore any updates where the LocationCode contained
Location001, you could change the preceding code sample as follows:

retry:
 try
 {
 dxWrite.SubmitChanges(ConflictMode.ContinueOnConflict);
 }
 catch (ChangeConflictException)
 {
 //bind any conflicts to a data grid so that we can see them
 dataGridView2.DataSource = dxWrite.ChangeConflicts.ToList();
 dxWrite.ChangeConflicts.ResolveAll();
 goto retry;
 }

Field Level Conflict Resolution As illustrated in Figure 14-1, each ObjectChangeConflict

object has a MemberConflicts property that returns a reference to a collection of
MemberChangeConflict objects. As described earlier, a MemberChangeConflict

object represents a change conflict at the individual field level, and again, like the

384 PART IV Data Access Layer

ObjectChangeConflict object, the MemberChangeConflict object has a Resolve method. The
difference this time is that there are only two overloads: The first accepts a RefreshMode

parameter and behaves in a similar fashion to the Resolve method on the higher level
objects. The second override accepts an object, and rather than attempting to resolve the
conflict based on the values that have been set, it simply sets the field value to the object.

For example, if we wanted to flag fields where new value contained the original value
but a conflict had been detected, we could do this by appending the text Disputed to the
new field value. Using the preceding code sample, we could achieve this with the following:

retry:
 try
 {
 dxWrite.SubmitChanges(ConflictMode.ContinueOnConflict);
 }
 catch (ChangeConflictException)
 {
 //bind any conflicts to a data grid so that we can see them
 dataGridView2.DataSource = dxWrite.ChangeConflicts.ToList();

 //Select the conflicts that we're interested in
 var keepChanges = (from c in dxWrite.ChangeConflicts
 from m in c.MemberConflicts
 where m.CurrentValue.ToString().Contains(
 m.OriginalValue.ToString())
 && m.CurrentValue is string
 select m).ToList();

 //Resolve by appending some text
 keepChanges.ForEach(m => m.Resolve(m.CurrentValue + "-Disputed"));

 //Call ResolveAll to resolve everything else using the default values
 dxWrite.ChangeConflicts.ResolveAll();
 goto retry;
 }

You can see that handling change conflicts using LINQ to SharePoint is flexible enough
to accommodate practically any requirement.

Considerations when Setting ConflictMode
You may have noticed in the past few code samples that SubmitChanges is being called
with ConflictMode.ContinueOnConflict. This is useful when more than one item is being
updated, because it allows you to deal with all conflicts at once. Changing this value to
ConflictMode.FailOnFirstConflict would allow only one conflict to be detected each time
SubmitChanges was called. The code in the sample would still work, but it would do so by
calling SubmitChanges many times, each time resolving one conflict.

One thing to bear in mind when resolving conflicts is that in the time it takes to resolve
a conflict, more concurrent updates may have occurred. In heavy traffic situations where
many concurrent updates present a problem, resolving conflicts individually may be more
effective, because it takes less time to apply changes to one item than it does to apply
changes to many, so the likelihood of more concurrent updates occurring is reduced.

Chapter 14 LINQ to SharePoint and SPMetal 385

P
a

rt
 I

V

Summary
This chapter introduced LINQ as the preferred way of programmatically working with
SharePoint data. LINQ to SharePoint is a powerful tool that allows developers to write
strongly typed code to create, edit, update, and delete data from SharePoint lists and
libraries, all using a syntax that is familiar to developers with experience of LINQ to SQL
or indeed with experience of SQL syntax itself. SPMetal is an easy to use, flexible tool that
quickly creates entity types for each list and library within a SharePoint site.

As discussed at the beginning of the chapter, the two main problems with data layer
development in SharePoint are a lack of compile time validation for CAML and the
extensive use of indexed properties to access data. By using strongly typed entity objects to
contain data and LINQ syntax to perform queries, you can write and test your code much
more effectively, all with full design-time validation and IntelliSense support in Visual
Studio 2010.

This chapter also discussed how content types can be shared across multiple sites and
compared the SharePoint data structure and the more traditional relational database
structure with which we developers are very familiar. There’s no doubt that making the
jump from relational database to SharePoint requires a bit of thought and planning, but
with the introduction of useful new tools like LINQ to SharePoint and SPMetal, designing
and building data-driven applications using SharePoint 2010 is hopefully much easier than
ever before.

This page intentionally left blank

15
CHAPTER

387

Business Connectivity
Services

When it comes to building business applications, one thing has become universally true: no
application is an island. Every organization, no matter what its size, uses more than one tool
to manage data. The big challenge in software engineering today is the unification of these
disparate business systems to provide a consolidated platform for managing an
organization.

Of course, each of the many possible solutions to this problem has its own strengths and
weaknesses. However, no matter which set of tools and technologies you use, ultimately, the
answer is a mash-up—a consolidation of various components and data to create a new
application to serve a particular function.

SharePoint is an application development platform that has mash-up embedded in its
architecture. As you’ve seen in the preceding chapters, SharePoint is all about providing a
framework that allows developers to include components and data from many different
sources. From the use of web parts for creating customizable user interfaces right through to
Business Connectivity Services, a tool for interfacing with any kind of data, from any source,
SharePoint makes it easy to build new applications that leverage existing business systems.

Business Data Catalog in MOSS 2007
SharePoint 2007 introduced the Business Data Catalog, which existed as a tool to allow
line-of-business data to be surfaced within SharePoint web sites. Using a collection of
specially designed web parts, it was easy to integrate business data with other content
created and managed by SharePoint. For example, a connection could be made to a
customer relationship management (CRM) system to allow customer contact details
to be retrieved and displayed within an intranet site.

With the release of SharePoint 2010, things have moved on considerably. The biggest
shortfall with Business Data Catalog was its inability to update data. Information imported
using Business Data Catalog was read-only—meaning users had to go back to the source
system if they wanted to make changes. Of course, this makes sense if you consider that
the aim of Business Data Catalog was to allow the incorporation of business data within
SharePoint-managed content. However, having to go back to the source system to make
changes is an anathema in the age of the mash-up.

388 PART IV Data Access Layer

SharePoint 2010 introduces Business Connectivity Services (BCS), which can be used
to amalgamate business data with SharePoint-managed content. BCS can also be used as an
abstraction layer for practically any data source. It’s now easy to create mash-up applications
with full read and write access to all business systems using a single data access platform.

Components of BCS
Business Connectivity Services is the generic name for a set of services and components
that enable connectivity between disparate business systems. Several key components are
involved in the delivery of BCS, which is included as a component of Microsoft Office 2010,
providing universal data access for Office client applications.

External Content Types
Content types are a core part of the SharePoint data structure, as you’ve already seen in
previous chapters. External content types, as the name suggests, extend the content type
metaphor to content stored in other systems and accessed via BCS.

Although external content types share a lot of common functionality with standard
content types, there are a few important differences. First, external content types are
created and managed by BCS. It’s not possible to add columns or make changes to columns
in an external content type without redefining the underlying BCS model. Second, external
content types can’t be used in ordinary lists or attached to ordinary lists in the same way
that standard content types can. You can create external lists that look and behave in much
the same way as a regular list, but those lists are bound to a single external content type only.

TIP In the MSDN documentation for BCS, you’ll often find references both to entities and external
content types. To save any confusion, both are effectively the same thing. An external content type is
created by defining an entity using BCS. Strictly speaking, an entity is the definition of a particular
item of data using Business Data Connectivity metadata, whereas an external content type is a
SharePoint implementation of that representation.

External Lists
As mentioned, external content types can’t be used in regular lists. SharePoint 2010
introduces a new type of list, known as the external list, that provides full read/write
functionality for external data. Each external list is bound to a single external content type
and allows the user to create, read, update, and delete data in the external system in much
the same way as a regular list does for SharePoint-managed data. Of course, the actual
capabilities of the list are dependent on the BCS configuration for the data source. For
example, if the underlying model doesn’t support deletion, then delete functionality will
be unavailable in the external list.

External Data Column
The external data column is an enhancement of the Business Data List column in
SharePoint 2007. It’s basically a lookup column that can be included in any SharePoint
list, where it will allow the user to select items from an external data source. For example,
in a list containing employee reviews, if a company’s HR system is linked via BCS, an
external column can be added to the list that allows employee details to be attached to
review data. The external data column allows one record to be selected, but any number
of fields from that record can be included. So in our example, we could bring through

New in

2010

New in

2010

New in

2010

Chapter 15 Business Connectivity Services 389

P
a

rt
 I

V

employee name, payroll number, and contact telephone all by selecting the employee
from a searchable list.

External Data Search
Included in the SharePoint Server 2010 product is External Data Search, a service that
allows data linked using BCS to be indexed and returned in search results in the same
way as SharePoint managed data. External Data Search gives an organization the ability to
search and index all business data regardless of the source, as long as an appropriate BCS
model can be defined.

Secure Store Service
The Secure Store Service replaces the Single Sign On Service that was included with MOSS
2007. Because BCS allows connectivity with a number of different systems, one of the
problems that can arise is the maintenance of multiple sets of credentials for each user. It’s
quite common for each line-of-business application to require users to authenticate, often
using different credentials each time. Secure Store Service resolves this problem by securely
storing credentials for each line-of-business application and mapping those credentials to
a particular SharePoint login. So, for example, Joe Bloggs is automatically logged into
SharePoint using his username domain\jbloggs. However, when he accesses the company’s
enterprise resource planning (ERP) system, he has to log in with the username bloggs-j and
a different password. By using the Secure Store Service, when he needs to access business
data via BCS in SharePoint, his credentials for the ERP system are automatically retrieved
and used transparently by BCS.

Profile Pages
In MOSS 2007, the main mechanism for viewing business data in SharePoint was the profile
page. Profile pages were automatically generated from a set of specially designed web parts
to provide full details of the business data in question as well as any related items. In
SharePoint Server 2010, this functionality is still present and offers a quick and easy way
to present a read-only view of business data.

External Data Web Parts
As mentioned, SharePoint Server 2010 includes the functionality to generate profile pages
for BCS entities automatically. This functionality is provided by the following web parts,
which can be connected together to provide a comprehensive view of a particular entity
and any related entities:

External Data List• The External Data List web part (formerly known as the
Business Data List web part) is used to display a read-only list of data relating to
a particular external content type.

External Data Item• This web part (formerly known as the Business Data Details
web part) is used to display the details of a single item of a particular External
Content Type. This web part is particularly useful since it uses Extensible Stylesheet
Language Transformations (XSLT) to transform the data, allowing a great deal of
flexibility in terms of how the data is presented.

External Data Item Builder• This web part (formerly known as the Business Data
Item Builder web part) is used to retrieve a particular item based on parameters

390 PART IV Data Access Layer

passed via the query string. This web part is then connected to other web parts,
such as the External Data Item, to display the data to the user.

External Data Related List• This web part (formerly known as the Business Data
Association web part) can be used to retrieve a list of items automatically from a
related External Content Type. Again, by connecting this web part to others such as
the External Data List, associated data is automatically retrieved based on the item
selected in the External Data List web part.

External Data Connectivity Filter• While the External Data Item Builder web part
is used to identify an item based on parameters from the query string, the External
Data Connectivity Filter (formerly known as the Business Data Filter web part) can
be used to capture criteria on the page. This web part can then be connected to
other web parts to display associated data.

Rich Client Integration
One of the major features of BCS is its ability to present a common platform for accessing
business data. By using this model, SharePoint Server 2010 provides the facility to surface
business data in rich client applications such as Microsoft Outlook. For example, a list of
employees located in an HR system can be accessed via BCS in an external list. However,
with rich client integration, the external list can also be accessed as a contacts list in
Microsoft Outlook. In a similar fashion to external lists, full read/write functionality is
also available in the client application. It’s possible to update a contact record in Outlook
and have it automatically cascaded through to the HR system. Furthermore, all clients
connected to the data via Outlook will see the effects of the update through an automatic
synchronization process.

Rich Client Components
As well as the features present in SharePoint 2010, Office 2010 applications also include
additional functionality to use BCS data, including the following:

External data parts• Controls that display items or lists of items retrieved from BCS
in a client application.

Actions• When creating BCS models, custom actions can be associated with each
external content type. These actions are carried through to rich client applications
and appear in the ribbon, allowing for seamless integration with the BCS system
from the client application. For example, the BCS model may define a Submit
Order action that creates and submits an order based on a particular entity. The
order can then be created using a rich client application and submitted using a
custom action, all without any specific coding requirements on the rich client side.

Business Data Connectivity Service
The Business Data Connectivity (BDC) service is the successor to the Business Data Catalog
service in MOSS 2007. The name was changed because “Catalog” suggests a read-only
collection of business data, whereas the new BDC service provides full read/write capability.
BDC provides the engine for BCS by creating and managing metadata describing possible
interactions with the source data systems as well as providing an extensible connector
framework.

Chapter 15 Business Connectivity Services 391

P
a

rt
 I

V

Connector Framework By default, BDC provides connectivity to a number of different
systems:

Databases• By making use of ADO.NET, the BDC provides access to any database
for which ADO.NET drivers exist. Since the ADO.NET provider model is extensible,
it’s possible to create ADO.NET drivers for practically any database system.

Windows Communication Foundation (WCF) endpoints• WCF provides a framework
for accessing web services. By using WCF endpoints, the BDC is able to communicate
with external data systems via appropriately designed web services.

.• NET Connectivity Assemblies Even though using ADO.NET and WCF provides
the flexibility to talk to the vast majority of data systems, sometimes neither of these
methods is appropriate. For systems such as these, using .NET Connectivity Assemblies
is the answer. Since the assemblies are written in managed code, they can perform
whatever actions are required to access the source system.

NOTE At the time of writing, SharePoint Designer supports the creation of SQL Server connections only.
It is possible to create a connection for other ADO.NET data providers, but manual generation of the
BDC metadata will be required. Some third-party tools offer a much higher degree of customization
of BDC metadata, such as BCS Meta Man from Lightning Tools.

Clearly, these three options cover virtually every imaginable scenario; however, just in
case a hitherto unimagined scenario crops up in the future, BDC also provides a pluggable
connector framework that lets developers plug in a new connector for systems of different
types. The three connectors described here are examples of out-of-the-box connectors.

TIP Although BDC provides a connector for WCF endpoints, unless the web service meets very specific
requirements, it can’t be configured using the WCF Connection wizard. Having tried to configure
several well-known web services via the wizard, I found it to be practically impossible. The WCF
connector is best used to communicate with custom-designed WCF or Simple Object Access
Protocol (SOAP) services. For any other web service, a .NET Connectivity Assembly will provide
the configuration flexibility required.

Demonstration Scenario
To demonstrate the capabilities of BCS, we’ll design and build a simple application based
on the following scenario:

You’ve been asked to develop an application for the marketing department of
Adventure Works Corp. that will assist them in building a repository of competitive
analysis data. The repository will consist of a series of reports comparing the company’s
product models with competing products from other vendors. Adventure Works has an
ERP system in place that maintains details of all product models and associated products.

Since product data is maintained in a separate ERP system, we’ll use BCS to surface
this data in SharePoint. Additionally, we’ll attach Internet-based content by developing a
connectivity assembly for Bing.com. Once these connections have been defined, we’ll be
able to create a new document library to hold the reports. We’ll add columns to the reports

392 PART IV Data Access Layer

library to allow the selection of the appropriate product model from the ERP system and a
link to the competing product on an external web site.

Prerequisites
To provide some sample data to work with in our various examples, you’ll need to download
and install the SQL Server 2008 sample databases, which can be found at www.codeplex.
com/MSFTDBProdSamples. Our code examples make use of the AdventureWorks OLTP
database installed on the local instance of SQL Server 2008.

As well as connecting to a database, we also need to retrieve search results from Bing.com.
To make use of the Bing.com web service API, we must first generate a unique application
ID (AppID) that can be used within our code. To generate a new AppID, follow the process
detailed at www.bing.com/developer.

To create a new site for our sample application, take the following steps:

 1. Open SharePoint Designer.

 2. Click the New Blank Web Site button.

 3. In the dialog that appears, enter the name http://<your server name>/Chapter15.

 4. Click on OK to create the site.

Connecting to BCS Data Using SharePoint Designer
As discussed earlier in this chapter, BCS data is surfaced in SharePoint via external content
types. Regardless of the mechanism used to connect to the data, whether it’s via an out-of-
the-box connector such as ADO.NET or WCF or via a connectivity assembly or custom
connector, the end result is a series of external content types, each of which represents a
single entity definition in the source system. So, for example, in an underlying CRM system,
entities may be defined for Customer, Address, and Sales Order.

Associations
Naturally, in any data system, entities have relationships—for example, a Customer entity
may be related to a Sales Order entity. BCS allows for the modeling of such relationships
using associations. It’s possible to create associations between any two external content types
provided they have appropriate identifiers.

To take our CRM example a bit further, let’s say we also had an ERP system with stock
information on individual products. The product stock level was defined in an entity called
Product in the ERP model. If the Sales Order entity in our CRM model contained a ProductId
field of type Int32 and the Product Entity in our ERP model contained an identifier named
ManufacturedProductId, also of type Int32, it would be possible to create a relationship
between these entities regardless of the fact that they exist in separate systems.

Stereotypes
You may wonder how a system that’s capable of retrieving data from practically any data
source works. In general programming terms, where an object must communicate with
other objects of unknown type, a common standard is adopted, either via the implementation
of a known interface or via inheritance, which requires that all objects inherit from a

www.codeplex.com/MSFTDBProdSamples
www.codeplex.com/MSFTDBProdSamples
www.bing.com/developer

Chapter 15 Business Connectivity Services 393

P
a

rt
 I

V

common base class. The BDC service, the engine behind BCS, employs a similar mechanism
known as stereotyping.

You may also be wondering, why call it stereotyping? Why not use an established term
that makes more sense to developers? There is a very good reason for this: The BDC service
is all about defining the connections between two systems, not physically making the
connections. None of the code in the BDC service actually sends or receives data between
A and B; instead, the BDC service simply delegates the request to the appropriate endpoint.
As a consequence, there is nowhere to implement an interface and no abstract classes to
inherit from—it’s all about metadata. Stereotyping denotes a particular endpoint and
configuration as being appropriate for a particular operation. For example, one important
stereotype is SpecificFinder. A model may contain metadata that specifies that requests
should be sent to the ReadRecordFromDataBase function in the MyBDCModel assembly
whenever a SpecificFinder operation is executed.

The BDC Service defines a number of stereotypes covering every data access operation
supported by the platform. Not all of these operations are commonly required, although
the following operations are used in most models to provide create, read, update, delete,
and query (CRUDQ) functionality:

Operation Description

Creator Creates a new item in the external data store.

SpecificFinder Returns a single specific item from the underlying data store. The
parameters for this operation are defined by the identifiers that are
associated with the external content type.

Updater Updates items in the external data store.

Deleter Deletes items in the underlying data store.

Finder Returns a list of items from the external data store usually based on
some criteria.

The following operations provide additional functionality for use in specific
circumstances:

Operation Description

AccessChecker Retrieves the permissions of the calling security
principal for each of a collection of items.

AssociationNavigator Retrieves a collection of items that are associated with a
single specified item.

Scalar Calls a method on the external system that returns a
single value (for example, use a scalar operation to get
the total sales made to date from the external system).

Associator Associates two specific items.

BinarySecurityDescriptorAccessor Retrieves a sequence of bytes from an external system.
The byte sequence describes a set of security principals
and the associated permissions of each security
principal for a specified item.

BulkAssociatedIdEnumerator Retrieves pairs of source and destination items for a
specified association.

394 PART IV Data Access Layer

Operation Description

BulkAssociationNavigator Retrieves destination items that are associated with
multiple specified items for each of the sources of the
specified association.

BulkIdEnumerator Retrieves a set of instance IDs and a small subset of
important fields of items that are identified by the
specified set of Instance IDs.

BulkSpecificFinder Returns a set of instances of an entity, given a set of
instance IDs.

ChangedIdEnumerator Retrieves a collection of items that were modified in an
external system after a specified time.

DeletedIdEnumerator Retrieves a collection of items that were deleted from
an external system after the specified time.

Disassociator Removes an association between two specified items.

GenericInvoker Performs a specific task in an external system.

IdEnumerator Returns a collection of identifiers for entities of a
specific type. Works similar to the Finder operation,
except that IdEnumerator returns identifiers only.

StreamAccessor Retrieves a field of an item as a data stream of bytes.

Create an External Content Type
Now that you understand what BCS is and how the BDC service uses metadata to connect
to external systems, you’re ready to put this knowledge into practice by creating an external
content type using SharePoint Designer.

 1. In SharePoint Designer,
connect to the new site that
we created earlier. From the
Site Objects menu, choose
External Content Types:

 2. From the ribbon, in the
New section, select External
Content Type. In the page
that appears, double-click
New External Content Type
next to the Name label and
change the name to Model.

 3. From the ribbon, select
Operations Design View.
You’ll notice that the title
of the window changes to
Model, confirming that
the name change has been

Chapter 15 Business Connectivity Services 395

P
a

rt
 I

V

applied. In the window that appears, click the Add Connection button. In the dialog
that appears, set the Data Source Type to SQL Server, as shown; then click OK to
continue.

 4. In the SQL Server Connection dialog, enter the name of your SQL server in the
Database Server text box. For example, if you’re using the local SQL Express
instance, you will type .\SQLExpress. In the Database Name text box, type
AdventureWorks. Accept the default connection option of Connect With User’s
Identity. Click on OK to create the connection.

Define SpecificFinder Operation

 1. After the connection has been verified, in the Data Source Explorer tab, you’ll be
able to see the objects in the database. Expand the Tables node and then scroll
down to the ProductModel table. Right-click the table, and in the context menu,
you’ll see a number of options for defining operations on the ProductModel entity.
Select New Read Item Operation.

 2. The Read Item Wizard will start, where you can define the metadata for a new
SpecificFinder operation. In the Operation Name text box, type Read Item. Click
Next to continue.

396 PART IV Data Access Layer

 3. On the Input Parameters page, you’ll notice a few important things:

ProductModelID is highlighted as an identifier. Each entity must define at least •
one identifier, though more than one identifier can be defined. For example, if
you have a many-many relationship between two tables in a database, you may
have a join table with a compound primary key. In this case, you’d have two
identifiers.

Each item has a Display Name and Default Value option. Changing the Display •
Name in this page has no effect when creating external lists since the display
name used by SharePoint is taken from the return values. Changing the Default
Value will apply a default if the input parameter is null.

 Accept the default settings by clicking Next to move to the next page.

 4. On the Return Parameter page, notice a few more options:

Each field can be checked or unchecked, although unchecking the •
ProductModelID yields an error since each entity must have an identifier.
Unchecking other fields may raise a warning if the field is not nullable in
the underlying table, because updates and additions will be impossible since
a value is required by the database schema.

Remember that even though we’re defining a SpecificFinder operation, unchecking •
columns here affects the overall definition of the entity. This means that it will
not be possible to add or update values in fields that are unchecked even though
the operations to perform these actions are defined separately. In effect, the
SpecificFinder defines the columns of any external lists created from the External
Content Type and consequently the columns used when adding and editing data.

A number of parameters appear for each field, including a Map to Identifier •
checkbox. Identifiers are defined in metadata separately and must be mapped
to fields using this option.

The Display Name property defines the column name as it appears in External •
Lists created from the external content type. It also defines the text on the label
that appears next to the item in add and edit forms.

 Click Finish to complete the creation of the Read Item operation.

NOTE If we had an additional entity that could be correlated by using a particular field—such as
Name—you would imagine that we could flag Name as an identifier, allowing associations between
the entities to be made. However, this change has some undesirable implications: since Name is now
an identifier, we effectively have a compound primary key. This means that all associations would be
created based on both the Name and ProductModelID fields. It would not be possible to create an
association based on one field or the other in isolation, thus defeating the object of the change.

Chapter 15 Business Connectivity Services 397

P
a

rt
 I

V

Define Finder Operation
Now that we have defined a SpecificFinder operation to retrieve individual items from our
data source, the next requirement for creating an external list is to define a Finder operation.
The external list, like all other lists in SharePoint, makes use of the XsltListViewWebPart to
render the contents of the list. However, rather than retrieving the list contents from the
SharePoint database, the View definition contains a Method element specifying the name
of a Finder operation that’s been defined on the external content type.

Creating a Finder operation follows a similar process to the creation of the
SpecificFinder operation:

 1. Right-click a table on which to define the operation and then select the type
of operation from the context menu. In this case, we’ll create a new Read List
operation on the ProductModel table.

 2. In the wizard that appears, set the Operation Name to Read List, and then click
Next to continue.

 3. On the Filter Parameters Configuration page, you’ll notice in the Errors and
Warnings section a warning message relating to the creation of a limit filter. By
default, a limit filter is not created, and this has implications when creating external
lists. The default maximum number of rows that can be supported by an external
list is 2000 (although this value is configurable, as detailed in Chapter 20). If the
Finder operation returns more rows than this, we’ll end up with a pretty cryptic
web part error when we try to view the data in our external list.

TIP Even when external lists are not required, by not setting a filter, we’re allowing the BDC service to
return all rows in a table. In most cases, this would represent a significant waste of system resources.

Add a Limit Filter

 1. To add a limit filter, click the Add Filter Parameter button. A new filter will be
added to the list of Filter Parameters.

 2. From the Data Source Element drop-down, select the field that contains the data
to be filtered. In this case, it doesn’t matter which column we select since we’re
applying a limit filter. Leave the default of ProductModelID selected.

 3. Next to Filter, click the Click To Add hyperlink to display the filter configuration
dialog.

 4. In the New Filter text box, enter Limit Filter as the name. Select Limit from the
Filter Type drop-down and <<None>> from the Filter Field drop-down. Click OK
to create the filter.

398 PART IV Data Access Layer

 5. In the Properties section of the Filter Parameters Configuration page, in the
Default Value combo box, enter 2000 as the default. The completed page should
look as illustrated next:

 6. Click Next to move on to the Return Parameter Configuration step. You’ll notice
that this page is similar to the Return Parameter page used when creating a
SpecificFinder method. However, there is one significant difference: the inclusion
of the Show In Picker checkbox in the properties for each field. As you’ll see later,
the External Data Picker control allows the user to search for an item from an
external data source. Selecting the Show In Picker flag will include the associated
field as a column in the results displayed in the External Data Picker control. Set
the Show In Picker flag for the Name field only. Click Finish to complete the wizard.

TIP By default, none of the fields have Show In Picker selected. Since the External Data Picker doesn’t
know which fields to include, it simply includes all of them. A much better user experience can be
gained by displaying only useful columns in the picker control.

Create All Operations
We’ve now added the minimum operations required to generate an external list. If we
generate a list using only these operations, users will be able to view data in a list but will
not be able to add, edit, or delete since we haven’t defined those operations.

Chapter 15 Business Connectivity Services 399

P
a

rt
 I

V

We manually created the Finder and the SpecificFinder to give us a chance to review
the various configuration options. Thankfully, in the real world, you don’t need to go
through the same steps for each operation; you can simply select Create All Operations
from the context menu. A wizard will automatically generate the required operations to
allow users to read and write to the external data store.

 1. Use the Create All Operations wizard to add additional operations to the Model
content type. Once the wizard has completed, delete both the Read Item 2 operation
and the Read List 2 operation since these are duplicates of the operations that we
manually created. When using SharePoint Designer, items can be deleted using the
Remove command.

 2. Save the changes by clicking the Save icon in the upper-left corner of the window.

Create an External List

 1. Select the Model External Content Type, and then click the Create Lists & Form
button in the ribbon.

 2. In the dialog that appears, make sure that Create New External List is selected.

 3. In the List Name text box, enter Product Models. Read Item Operation should be
set to Read Item and System Instance should be set to AdventureWorks. You can
add a List Description if you’re feeling particularly conscientious.

 4. Click OK to create a new external list based on our Model External Content Type.

Once the list has been created, navigating to http://localhost/Chapter15 will show a
link to the new list on the left side of the page. When you open the list, you can see that it’s
populated with data from our AdventureWorks database, as expected.

Since the list is rendered directly from the AdventureWorks database whenever the
page is loaded, any changes made in the database will have immediate effect. By the same
token, any changes made in SharePoint are applied directly to the database.

Create an Associated External Content Type
Now that you’re familiar with the tools used to create external content types, you’re ready
to create another external content type for product information. Then we’ll define a
parent-child relationship between our new Product content type and our existing Model
content type.

 1. Follow the steps detailed earlier to create a new external content type named Product
based on the AdventureWorks Product table. Rather than manually configuring each
operation, select Create All Operations from the context menu to allow the wizard
to do most of the work. This time flag the Name and ProductNumber fields to
appear in the picker. Remember to include a Limit filter to restrict the number
of rows returned.

 2. In the Operations Design View, right-click the Product table to show the operations
context menu. This time, select New Association to create an association between
this entity and our Model entity.

400 PART IV Data Access Layer

 3. In the Association wizard, change the Association Name and the Association
Display Name to Product Model. The Association Display Name is shown in any
form as the label for the External Data Picker control.

 4. Click the Browse button and in the dialog that appears, select Model. When an
entity is selected, its identifiers are listed in the Related Identifier column. To the
right is a Field column that contains drop-down lists, where we can select the field
in our content type that maps to the identifier in the associated entity. In effect, the
Related Identifier column contains the primary key columns of the entity that we’re
associating with, and by selecting a matching field in our entity, we’re creating a
foreign key relationship.

 5. Click Next to proceed to the Input Parameters page. Even though in the preceding
step we defined the relationships between the entities, in the Input Parameters
page we have to select the foreign key field from the list of Data Source Elements,
and then check the Map To Identifier checkbox to create the foreign key relationship
physically. Click Finish to complete the wizard. The list of external content type
operations should be populated, as shown here:

External Data Picker Control
We’ve now created a new Product external content type that has a relationship with our
existing Model content type. To see the effects of this association in action, create a new
external list based on the Product content type. In the Create List and Form dialog, set the
List Name to Products.

Chapter 15 Business Connectivity Services 401

P
a

rt
 I

V

By browsing to the new Products list using Internet Explorer, you’ll see that when
editing an item in the list, models can be selected from a list using an External Data Picker
control, as shown here:

You should notice a few things when you’re using the data picker. First, the list displays
all rows from the Models table. If you enter criteria in the Find box, you’ll get an error
message, as shown next. Second, if you select an item from the list and then click OK, the

402 PART IV Data Access Layer

Product Model control contains the ID of the selected item rather than the user-friendly
text you might expect.

Both of these problems are easy to resolve and take us back to our Model content type.

Setting Picker Display Text
When opening the Model content type in Summary View, you’ll notice a list of fields on the
right side of the page.

 1. Select the Name field, and from the ribbon, click the Set As Title button.

 2. Save the changes to the external content type, and then review the Products list in
Internet Explorer.

This time, when editing an item, the model name is displayed when a model is selected
rather than the ID.

Each external content type can have a title column defined. If no title is defined, the ID
is used instead. Any column in the entity can be flagged as the title.

Adding Picker Search Functionality
The next problem requires a few more mouse clicks to resolve. Open the Model content
type in Operations Design View. Since we want to change the way lists of items are returned,
we need to adjust the settings for the Finder operation.

Chapter 15 Business Connectivity Services 403

P
a

rt
 I

V

 1. In SharePoint Designer, Finder operations are created using the Read List type.
Highlight the Read List operation, and then select Edit Operation from the ribbon.

 2. In the Filter Parameters step of the Edit Operation wizard, click Add New Filter
Parameter to add an additional filter.

 3. Set the Data Source Element to Name, and then click the Click To Add link to show
the Filter Configuration dialog.

 4. Create a new filter named Search Filter and set the Filter Type to Wildcard.

 5. Since we don’t want to apply this filter where no criteria have been entered, check
the Ignore Filter If Value Is checkbox. The default option of Null is fine.

 A couple additional checkboxes warrant some explanation:

The Is Default checkbox determines whether the filter should be selected by •
default in the picker control. You’ll remember that the picker control contains
a drop-down list of search types as well as a text box for the user to enter search
criteria. A check in the Is Default checkbox means the filter will automatically be
selected as the default in the search types drop-down.

The Use To Create Match List In Data Picker checkbox also relates to the default •
search. However, rather than setting the default search in the search types drop-
down, the checkbox defines which filter should be used when the user types a
value in the External Data Picker control without clicking the picker button. So,
for example, on an edit page containing an External Data Picker control, the
control is rendered as a text box with two buttons. The rightmost button opens
up the picker, and the left button performs a behind-the-scenes search using the
value entered in the text box. If a single match is found, the item is selected. If
not, a list of suggestions are presented.

 With an understanding of the Is Default and Use To Create Match List In Data
Picker options, set both of these options to true.

 6. Click Finish to apply the changes, and then save the external content type.

This time, when viewing the changes in the edit form, try entering jersey in the product
model text box, and then click the button to the immediate right. You’ll see an error message
indicating that no exact match was found, and you can click the underlined text to see a list
of suggestions, as illustrated here:

The picker now behaves as expected, filtering results based on the criteria entered in
the textbox and allowing search within the pop-up dialog.

404 PART IV Data Access Layer

TIP When moving between different object types in SharePoint Designer, it’s possible to pin one category
of objects to the left sidebar. In Figure 15-1, the External Content Types explorer is pinned to the
navigation bar while the List and Libraries explorer is visible in the main pane, making it easy to
switch to a particular external content type without first having to bring up the explorer.

Building a .NET Connectivity Assembly
You’ve seen how to connect to a business system using SharePoint Designer. The wizards
make it simple to connect to SQL Server databases or appropriately designed WCF services.
But what happens if you want to connect to something a bit more exotic? The answer is to
create a .NET connectivity assembly. By creating a connectivity assembly, you can write code

Figure 15-1 Pinning object explorers to the navigation bar

Chapter 15 Business Connectivity Services 405

P
a

rt
 I

V

to handle any of the operation stereotypes supported by the BDC service. As mentioned
earlier, BDC itself doesn’t read or write to the external data store; it simply delegates to an
appropriate endpoint. By creating a connectivity assembly, you can effectively create custom
endpoints to do whatever is appropriate for your application.

Pluggable Connector Framework
As briefly covered earlier in the section “Connector Framework,” BCS makes connections
to external systems via a pluggable connector framework. It is therefore possible to create
custom connectors to interface with external systems. While creating custom connectors is
beyond the scope of this chapter, it’s worthwhile for you to know the differences between
creating a custom connector and using a connectivity assembly.

Connectivity assemblies encapsulate an entire data access model. In the preceding
section, we worked through configuring the metadata for the database connector; with
connectivity assemblies, such configuration isn’t required since the metadata is installed
with the connectivity assembly. Naturally, this lack of configurability can also be considered
a drawback where the APIs for the external data store are likely to change frequently.

When you’re building custom connectors, you should be aware of some installation
considerations. Connector assemblies must be manually installed in the Global Assembly
Cache (GAC) on each server or rich client that intends to use the connector. By contrast,
a connectivity assembly is stored within the BDC data store and is therefore automatically
available to the BDC service on every server. Where the assembly is required by a rich-client
interface, it is seamlessly installed via ClickOnce.

Business Data Connectivity Model Project
From our demonstration scenario, we require the functionality to attach product information
retrieved from Internet search results to our competitive analysis reports. Of course, we
could achieve this result by using a web browser and simply cutting and pasting the URL
into a text field, but in the age of the mash-up, switching between applications in such a
fashion would almost certainly lead to a disciplinary hearing of the International Association
of Mash-up Artists—not to mention the fact that it would deprive us of the opportunity to
explore Business Data Connectivity Model projects in Visual Studio 2010.

Create a New Project in Visual Studio 2010
To create a new Business Data Connectivity Model project, take the following steps:

 1. Open Visual Studio 2010. Choose File | New | Project.

406 PART IV Data Access Layer

 2. In the New Project window, select SharePoint in the left pane and Business Data
Connectivity Model in the middle pane, as illustrated next. In the Name text field,
type BingConnectivity.

 3. In the SharePoint Customization Wizard, select your local server for use when
debugging.

 4. Click Finish to create the project. A new project will be created containing a BDC
Model and a single sample entity, as shown in Figure 15-2.

The Visual Studio 2010 design surface for creating connectivity assemblies includes a
number of specific tools. First, the entity view, shown in the middle of the page in Figure 15-2,
lets you see all of the entities defined in your data source and the identifiers and methods
defined on them. By clicking a method or identifier in the entity view, the BDC Method
Details pane, shown below the entity view in the figure, is populated with details about the
methods and identifiers defined in the entity. Finally, the upper-right pane in Figure 15-2
is the BDC Explorer pane. This control presents a hierarchical view of your BDC model.

NOTE At the time of writing, the BDC design tools are visible only when you’re viewing files with a .BDCM
extension.

Chapter 15 Business Connectivity Services 407

P
a

rt
 I

VCreate a Custom Entity Service Object
Before we jump into creating a new Entity Service object, it’s worth discussing what an
Entity Service object is and how it relates to the rest of the items in our model. A BDC
model project consists of three things:

A BDCM file that contains the configuration metadata for the connection•

An Entity Service class that contains the methods that will be the endpoints of the •
operations defined in the metadata

An Entity class that contains the data to be processed by the Entity Service methods•

To relate this back to the connection we made earlier via SharePoint Designer, the
BDCM file contains the configuration details that we entered in the Operations Design
View of the External Content Type. The Entity Service object is the equivalent of the ADO.
NET provider for SQL Server and the Entity class represents a row of data.

NOTE These relationships and their representation in the design tools can cause some confusion at first
glance. In the Entity View, it appears as though the methods are defined on the entity object. In fact,
the methods are declared as static methods on the Entity Service object.

Figure 15-2 The Business Data Connectivity Model design surface

408 PART IV Data Access Layer

Now that you have a clear understanding of the purpose of the Entity Service object, we
can move on to add the code required to support our data source.

 1. Since the Bing.com search service is accessed via a web service, we need to add a
new service reference. Choose Project | Add Service Reference.

 2. In the Add Service Reference dialog, enter http://api.bing.net/search

.wsdl?AppID=<Your App ID Goes Here>&Version=2.2.

 3. Click Go to download the service WSDL.

 4. Set the Namespace to Microsoft.Bing, and then click OK to create proxy classes for
the service, as shown here:

Define a Method to Support the Finder Stereotype Our next step is to implement
methods that will be called by BCS clients to interact with the data source. In our
demonstration scenario, we need to be able to query the data source using a wildcard
query and retrieve a single specific result.

First of all, let’s take a look at the query method. You’ll remember from earlier
examples that the operation for retrieving a list of data is referenced using the Finder
stereotype. We’ll start by creating a new method for this stereotype.

 1. In the Entity viewer in Visual Studio, delete the default Entity1 object, and then
drag a new Entity from the toolbox onto the design surface. Change the Entity
name to WebResult.

 2. In the BDC Methods Details pane, click <Add a Method> to create a new method.
From the drop-down that appears, select Create Finder Method. This will
automatically add a method named ReadList.

http://api.bing.net/search.wsdl?AppID=<YourAppIDGoesHere>&Version=2.2
http://api.bing.net/search.wsdl?AppID=<YourAppIDGoesHere>&Version=2.2

Chapter 15 Business Connectivity Services 409

P
a

rt
 I

V

 3. Since our Finder method needs to be able to perform wildcard searches, we need
to add a wildcard filter. We’re effectively performing the same configuration that
we did earlier when we set up a search filter on the Model External Content Type—
you’ll no doubt recognize some of the configuration objects that we’re dealing with.
To add a new filter, we first need a parameter to which we can attach the filter. We’ll
add a new query parameter to the ReadList method. Expand the parameters node
in the BDC Method Details pane, and then click Add a Parameter. Select Create A
Parameter to add a new parameter to the method. You’ll notice that although the
default parameter name is selected in the BDC Method Details pane, it’s not
possible to overtype it with a new value. To add a new value, we need to use the
Properties pane, as shown next. Type query for the new parameter name.

 4. With this new parameter in place, we’re now free to add a new filter. Under the
Filter Descriptors node, click <Add a Filter Descriptor>, and then select Create a
Filter Descriptor. As before, use the Properties pane to change the Name to Search

Filter and the Type to Wildcard. To make this filter the default, we need to add an
additional property. Click the ellipsis next to Custom Properties in the Properties
pane to add another property. Type IsDefault for the Name, System.Boolean for
the Type, and true for the Value.

 5. Now that we have a filter, we need to associate it with our ReadList method. We can
do this by selecting an associated type description. You’ll notice in the BDC Method
Details pane that each parameter has a type descriptor attached. A type descriptor is

410 PART IV Data Access Layer

metadata that defines the type of the
parameter as well as a number of
properties that control how the type
should be handled, such as whether
the type is an identifier or should
be read-only. When we added our
additional parameter to the ReadList
method, a new type descriptor was
automatically created. We need to
attach our Search Filter to this type.
From the BDC Explorer pane,
expand the ReadList node and the
query node beneath it. Select the
queryTypeDescriptor node to define
the properties of the parameter. First,
let’s change the name to something
more succinct: In the Properties pane,
change the Name to simply query. To
attach the filter to this type, select the
filter name (Search Filter) from the
drop-down list next to the Associated
Filter property, as illustrated next:

Define a Method to Support the

SpecificFinder Stereotype With our Finder
operation in place, the next thing we need
to add is a SpecificFinder operation to allow
clients to retrieve a single specific entity.

 1. Follow steps 2 and 3 above to add a
new method, but this time select
Create a SpecificFinder in the BDC
Method Details pane. By default, the
new method will be named ReadItem.

 2. Since this method returns only a
single item, we don’t need to create
any filters. However, we do need to add a parameter that will uniquely identify
the item to be returned. Since the results will consist of web pages, the most
sensible identifier is the URL. Follow steps 4 and 5 above to add a new parameter
named itemUrl.

 3. A new Type Descriptor of itemUrlTypeDescriptor is added. For the sake of brevity.
rename this as itemUrl using the BDC Explorer:

Chapter 15 Business Connectivity Services 411

P
a

rt
 I

V

 4. Before we move on to add the code to support these new methods, we need to add
one more piece of metadata to the model: we need to declare our identifier. Right-
click the WebResult entity and select Add | Identifier, as shown next. Change the
default name to itemUrl.

 5. With this identifier created, we can now update the metadata for the itemUrl
descriptor that we’re using to define the parameter for the ReadItem method. In
the BDC Explorer pane, select the itemUrl type descriptor (ReadItem | itemUrl |
itemUrl), and then, in the Properties pane, change the Identifier property to itemUrl.

412 PART IV Data Access Layer

Now that we have the metadata in place for our model, we can start fleshing out our
ReadList and ReadItem methods.

 1. Save the BDC model, and then switch to the Solution Explorer pane in Visual
Studio. You’ll notice that a WebResultService.cs file has been added. Open this file,
and you can see that as we’ve been making changes to the model, Visual Studio has
automatically created stub methods with the appropriate parameters for us. Since
we don’t need them, delete the Entity1.cs and Entity1Service.cs files that were
added to the project by default.

 2. In the WebResultService class, add the following code:

using System.Collections.Generic;
using System.Linq;
using System.ServiceModel.Channels;
using System.ServiceModel;
using BingConnectivity.Microsoft.Bing;

namespace BingConnectivity.BdcModel1
{
 public partial class WebResultService
 {
 public static IEnumerable<string> ReadList(string query)
 {
 //We can’t perform a web search with no query
 if (!string.IsNullOrEmpty(query))
 {
 //Get an instance of the Bing proxy class
 BingPortTypeClient client;
 SearchRequest request = GetRequestProxy(out client);

 //Setup the request parameters
 request.Query = query;

 //Execute the search
 SearchResponse response = client.Search(request);

 //Shape the results to suit our requirements
 var results = from r in response.Web.Results
 select r.Url;

 return results;
 }
 else
 {
 return null;
 }

 }

 public static string ReadItem(string itemUrl)
 {
 if (!string.IsNullOrEmpty(itemUrl))
 {
 BingPortTypeClient client;

Chapter 15 Business Connectivity Services 413

P
a

rt
 I

V

 SearchRequest request = GetRequestProxy(out client);
 request.Query = itemUrl;

 SearchResponse response = client.Search(request);

 //Since urls are globally unique this query will
 //only return one result
 return response.Web.Results.Single().Url;
 }
 else
 {
 return null;
 }

 }

 private static SearchRequest GetRequestProxy(out
 BingPortTypeClient client)
 {
 //When we added the service reference. Visual Studio automatically
 //added configuration information to app.config.
 //However since this assembly may be called from a number of processes
 //app.config won’t be available. As a result we need to manually
 //configure the service.

 Binding b = new BasicHttpBinding();
 EndpointAddress address = new
 EndpointAddress("http://api.bing.net:80/soap.asmx");

 client = new BingPortTypeClient(b, address);

 SearchRequest request = new Microsoft.Bing.SearchRequest();

 request.AppId = "ENTER YOUR APPID HERE";

 //We’re only interested in search the Web source
 //See Bing SDK for more details on this parameter

 request.Sources = new SourceType[] { SourceType.Web };

 return request;
 }

 }
}

 3. With the methods fleshed out, we can now build and deploy the model to SharePoint
to see the results of our actions. Choose Build | Deploy BingConnectivity. The project
will be built, packaged, and automatically installed on the SharePoint server that we
specified when creating the project.

 4. In SharePoint Designer, navigate to the External Content Types explorer. You can
see that a new WebResult content type has been added with type .Net Assembly. By
opening the content type, you can see whether the metadata configuration is as
expected and the appropriate operations have been added.

414 PART IV Data Access Layer

TIP The SharePoint server that’s used as the target for deployments can be changed by clicking the
Project node in Solution Explorer and changing the Site URL property in the Properties pane.

Create a Custom Entity Object
One of the things you may notice when reviewing the properties of the WebResult External
Content Type in SharePoint Designer is that no fields are defined. Of course, there is a
perfectly reasonable explanation for this. If you look back at the return types for the ReadLst
and ReadItem methods, you’ll see that they return values of type IEnumerable<string> and
string, respectively. While this is a valid configuration, SharePoint Designer can’t break
down a single string into multiple fields; therefore, no fields are shown.

This is where the Entity object comes into play. An Entity object, as you’ll remember,
defines an individual row of data; it stores individual field data as properties. To show
individual fields in SharePoint, we need to create an appropriate object.

Earlier in the chapter, we added a service reference to allow us to communicate with
the Bing service. By examining the details of the service contract, we can determine what
fields are returned from the service. From the Bing Web Service definition Language
(WSDL), we see that the Search method returns an array of WebResult elements:

<xsd:complexType name="WebResult">
<xsd:sequence>
 <xsd:element minOccurs="0" maxOccurs="1" name="Title" type="xsd:string" />
 <xsd:element minOccurs="0" maxOccurs="1" name="Description" type="xsd:string" />
 <xsd:element minOccurs="0" maxOccurs="1" name="Url" type="xsd:string" />
 <xsd:element minOccurs="0" maxOccurs="1" name="CacheUrl" type="xsd:string" />
 <xsd:element minOccurs="0" maxOccurs="1" name="DisplayUrl" type="xsd:string" />
 <xsd:element minOccurs="0" maxOccurs="1" name="DateTime" type="xsd:string" />
 <xsd:element minOccurs="0" maxOccurs="1"
 name="SearchTags" type="tns:ArrayOfWebSearchTag" />
 <xsd:element minOccurs="0" maxOccurs="1"
 name="DeepLinks" type="tns:ArrayOfDeepLink" />
 </xsd:sequence>
 </xsd:complexType>

By creating an object with a property for each of these elements, we’ll be able to pass
the results back to our client application without any loss of data. However, rather than
create a new entity class from scratch, we can simply hook up our metadata to the
Microsoft.Bing.WebResult object that was created automatically when we added the service
reference. This eliminates the unnecessary step of reading the data from the proxy class
into a custom entity class before passing it back to the client.

TIP Although we could jump straight in and change the return types of our ReadList and ReadItem

methods, it’s always a good idea to make changes to the metadata first, since these changes are
automatically cascaded to the Entity Service. Following this procedure helps to eliminate mismatches
in data types since the assembly won’t build if a type copied from the metadata model into the
Entity Service code isn’t valid.

 1. Open the BdcModel1.bdcm model to display the Entity viewer. Since we want to
change the data type for the return parameter of the ReadItem and ReadList
methods, start by expanding the ReadItem method in the BDC Explorer pane.

Chapter 15 Business Connectivity Services 415

P
a

rt
 I

V

Select the WebResult Type Descriptor, and then in the Properties pane, change
the Type Name to BingConnectivity.Microsoft.Bing.WebResult, BdcModel1.

 2. Repeat this process for the ReadList method, except change the Type
Name for the WebResultList Type Descriptor to System.Collections.Generic

.IEnumerable`1[[BingConnectivity.Microsoft.Bing.WebResult, BdcModel1]]
and the Type Name for Type Descriptor WebResult to BingConnectivity.Microsoft

.Bing.WebResult, BdcModel1.

 3. Save the changes to the model, and then return to the WebResultService class.
You’ll notice that the method signatures have been updated accordingly.

 4. As a result of these updates, our project no longer builds, because our code returns
items of the wrong type. To fix this, update the ReadList method as follows:

public static IEnumerable<WebResult> ReadList(string query)
 {
 //We can’t perform a web search with no query
 if (!string.IsNullOrEmpty(query))
 {
 //Get an instance of the Bing proxy class
 BingPortTypeClient client;
 SearchRequest request = GetRequestProxy(out client);

 //Setup the request parameters
 request.Query = query;
 try
 {
 //Execute the search
 SearchResponse response = client.Search(request);

 return response.Web.Results;
 }
 catch(System.Exception)
 {
 return null;
 }
 }
 else
 {
 return null;
 }

 }

 5. To resolve the errors in the ReadItem method, update the code as follows:

 public static WebResult ReadItem(string itemUrl)
 {
 if (!string.IsNullOrEmpty(itemUrl))
 {
 BingPortTypeClient client;
 SearchRequest request = GetRequestProxy(out client);
 request.Query = itemUrl;

 SearchResponse response = client.Search(request);

416 PART IV Data Access Layer

 //Since urls are globally unique this query will only return one result
 return response.Web.Results.Single();
 }
 else
 {
 return null;
 }

 }

 Our project will now build correctly.

Define Entity Metadata Before we redeploy our assembly, we need to make another
important change. Even though we’ve updated the metadata to use the WebResult object
as our Entity class, we haven’t added metadata defining the properties of the WebResult
object. We need to update the WebResult Type Descriptor with details of the fields on the
object that we want to allow clients to use.

 1. Open up the model. In the BDC Explorer pane, navigate to the WebResult Type
Descriptor defined on the ReadItem method. Right-click the Type Descriptor node
and select Add Type Descriptor. This will add a child-type descriptor object that we
can use to declare details of a field.

 2. Add the following type descriptors:

Name Type Name

DateTime System.DateTime

Description System.String

DisplayUrl System.String

Title System.String

Url System.String

 3. In the properties for the Url type descriptor, set the Identifier to itemUrl to declare
this as the identifier for the entity.

 4. Now that we’ve updated the WebResult type descriptor for the ReadItem method,
we need to copy this information to the ReadList method. Thankfully the BDC
Explorer tool allows us to copy and paste descriptors. Delete the existing WebResult
descriptor from the ReadList method, and then copy the WebResult descriptor
node on the ReadItem method.

 5. Navigate to the WebResultList node on the ReadList method. Click to highlight it,
and then paste the WebResult node.

Chapter 15 Business Connectivity Services 417

P
a

rt
 I

V

 6. We’re now good to redeploy our completed connectivity assembly. Choose Build |
Deploy BingConnectivity.

Once the solution has been deployed, we can see in SharePoint Designer that the fields
are now available as expected. (You might need to press F5 to refresh the view to see the
changes.) We can test our model by creating an External List from it. Follow the procedure
discussed in the section “Create an External List.”

When navigating to your new list for the first time, you’ll notice that it’s empty. This is
expected, because the ReadList method requires a query property. So how do you set the
property? In External Lists, data source filters can be defined as part of the view. If you
modify the default ReadList view, you’ll find a Data Source Filters section containing a text
box to enter a parameter for our Search Filter. Type a search query in the Search Filter
text box and save the view to see the results displayed in the list:

418 PART IV Data Access Layer

Using BCS Data in External Data Columns
We’ve now successfully created connections to our sample ERP system and an external web
service that can be used to retrieve web results relating to competing products. With these
connections in place, our next step in completing the user interface for our application is
to define a new document library in which to store competitive analysis documents.

 1. Using Internet Explorer, navigate to our sample SharePoint site. Then, from the
Site Actions menu, select New Document Library. In the dialog that appears, type
the name of the document library: Competitive Analysis. Click Create to continue.

 2. Make sure that the Library menu is visible in the ribbon, and then select Library
Settings.

 3. To add an External Data Column that can be used to select a product to associate
with the Competitive Analysis document, click Create Column.

 4. Set the name of the new column to Model; then select the External Data type.

 5. In the Additional Column Settings section, in the External Content Type Picker,
enter Model. Then click the Verify button (with a checkmark) that appears to the
immediate right of the text box, as shown here:

 6. From the drop-down labeled Select The Field To Be Shown On This Column, choose
Name. As well as the Name field, we also want to include ModifiedDate as a field in
our list. Select this from the list of additional fields.

 7. Click OK to create the new column.

 8. Repeat steps 3 to 7 to add a link to the web-based content. This time, name the
column Competing Model. Set the External Content Type to WebResult. Show the
Title field in the column and include the DateTime field.

With these new columns in place, we’re ready to start uploading or creating documents.
As you’ll see when you upload a document, you are prompted to select a Model and a
Competing Model before you can save the document. In both cases, you can make use
of the External Picker Control to select the item from a list.

Once your document is saved to the document library, you’ll notice that additional
fields have been carried through from the external content type, such as Model: Modified
Date and Competing Model: Date Time.

Chapter 15 Business Connectivity Services 419

P
a

rt
 I

V

NOTE At the time of writing, creating External Data Columns is not supported using SharePoint Designer
2010 Beta 2.

Profile Pages
By using External Data Columns, you can easily combine data from external systems with
SharePoint-generated data, allowing for data consistency throughout your applications. But
what happens when you want to drill down into the data that’s associated with External
Data Column?

The answer is profile pages. This feature is available in SharePoint Server 2010 only,
and before it can be used, it must be configured via SharePoint 2010 Central
Administration. Let’s do that now:

 1. Open SharePoint 2010 Central Administration. In the Application Management
section, select Manage service applications.

 2. From the list of Service Applications, select Business Data Connectivity with type
Business Data Connectivity Service Application.

 3. On the Service Application Information page, select Edit from the top menu to
show the Edit ribbon. Then select Configure.

 4. Check the Enable Profile Page Creation checkbox. For the Host URL, enter http://

localhost/Chapter15.

420 PART IV Data Access Layer

NOTE As you saw in Chapter 9, service applications can be shared between multiple applications.
Generally where profile pages are being used by multiple sites, a dedicated site to host the pages
will be set up. For the sake of simplicity, we’ve used our demonstration site, but this is not indicative
of best practice.

Now that we have the facility to create profile pages, we need to do the work to create a
page for our Model external content type. Using SharePoint Designer, this is simple:

 1. In SharePoint Designer, navigate to the Model External Content Type.

 2. From the ribbon, select Create Profile Page.

That’s all there is to it. A new profile page has been created that will be automatically
linked to our Model content type wherever it appears in lists.

To see this in action, navigate to the Competitive Analysis document library that we
created earlier. You’ll notice that items in the Model column are now hyperlinks instead
of plain text. Clicking the hyperlink will take you to the auto-generated profile page for
that item.

The profile page presents a read-only view of the entity together with any associated
entities. In this case, you can see the Model together with any Products that are based on
the model. As mentioned earlier, the profile page is generated using External Data Web
Parts and as such can be customized further to meet specific requirements.

For example, in the Model profile page, let’s say we wanted to hide the rowguid and
ProductModelID columns. By selecting Edit Page from the Site Actions menu, and then
editing the properties of the Business Data Item web part, we can easily hide these fields.

Default Actions on External Content Types
I’m sure you’ll agree that profile pages are pretty useful stuff. Not only can we easily attach
data to our SharePoint lists and libraries using BCS, but with a few mouse clicks we can
generate a customizable user interface that can be used to drill down into that data.

But how does it work? What is it that connects the content type to the profile page?
What if the external system is web-based and we want to link to a page there instead? What
if we’re using SharePoint Foundation 2010 and don’t have the profile pages feature?

It’s all about actions and in particular the Default Action that’s been defined for our
External Content Type. The BDC model allows multiple actions to be defined for each
entity, where an action is basically a parameterized URL that can be used to connect to an
external system or to redirect to a page within the SharePoint site, as is the case with profile
pages. Once actions have been defined, they are available wherever the content type is
presented. As we saw earlier, for example, actions are automatically attached to External
Data Columns.

If we look back to our Competitive Analysis document library, one of the things we can
see is that no actions are defined for our WebResult content type. By clicking the icon to
the left of the text in our Competing Model column, you can see that no actions are
available on the context menu.

Since our WebResult content type represents a web page, it would be useful if our
default action was simply to connect to the associated web page. We can make this change
in Visual Studio 2010, as follows:

Chapter 15 Business Connectivity Services 421

P
a

rt
 I

V

 1. Open the BingConnectivity project. In the Solution Explorer pane, right-click the
BdcModel1.bdcm file, and then select Open With. From the list that appears, select
XML Editor.

 2. At the time of writing, the SharePoint BDC Designer tool in Visual Studio doesn’t
support the creation of actions, so we need to edit the underlying metadata file
directly. Make the highlighted changes:

<?xml version="1.0" encoding="utf-8"?>
<Model xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www
.w3.org/2001/XMLSchema" xmlns="http://schemas.microsoft.com/windows/2007/Business-
DataCatalog" Name="BdcModel1">
 <LobSystems>
 <LobSystem Name="BdcModel1" Type="DotNetAssembly">
 <LobSystemInstances>
 <LobSystemInstance Name="BdcModel1" />
 </LobSystemInstances>
 <Entities>
<!--IMPORTANT: Increment the Version number of the Model won’t deploy-->
 <Entity Name="WebResult" Namespace="BingConnectivity.BdcModel1"
 Version="1.0.0.49">
 <Properties>
 <!-- Clipped for brevity -->
<!-- The name of the DefaultAction is defined as a property on the Entity-->
<Property Name="DefaultAction" Type="System.String">ViewWebPage</Property>
 </Properties>
 <Identifiers>
 <!-- Clipped for brevity -->
 </Identifiers>
 <Methods>
 <!-- Clipped for brevity -->
 </Methods>
<!-- A new action section is added containing details of each action-->
 <Actions>
 <Action Name="ViewWebPage" DefaultDisplayName="View Web Page"
 Url="{0}" IsOpenedInNewWindow="true" Position="1">
 <ActionParameters>

<!-- The ActionParameter must be the name of a field returned from -->
<!-- the SpecificFinder method-->
<!-- The Index attribute related to the replacement index in the -->
<!-- Action Url attribute, in this case {0}-->

<ActionParameter Index="0" Name="Url"/>
 </ActionParameters>
 </Action>
 </Actions>
 </Entity>
 </Entities>
 </LobSystem>
 </LobSystems>
</Model>

 3. Deploy the updated metadata by selecting Deploy BingConnectivity from the Build
menu.

422 PART IV Data Access Layer

Now when you reload the Competitive Analysis document library, the Competing
Model column is hyperlinked. Clicking the link takes you to the URL originally returned
from our Bing search.

Summary
This chapter aimed to provide an overview of the Business Connectivity Services functionality
available in 2010. Through our demonstration scenarios, you’ve been able to take an in-depth
look at a lot of the key features and gain some experience with various tools.

As a standard platform for interfacing with business data, BCS offers unparalleled
functionality. Using the tools available in SharePoint Designer and Visual Studio 2010 as well
as third-party tools such as BCS Meta Man, it’s easy to surface business data in SharePoint. Of
course, it’s fair to say that programmatically using the data can be somewhat challenging at
first, but once you get into the way the abstraction works, you will really begin to see the
power of BCS as a platform for accessing data in any client application.

16
CHAPTER

423

Enterprise Search

When modern computing was still young, the vast majority of processing power was used
for generating content—performing calculations, analyzing input, and producing useful
output. Today, although a sizeable percentage of processing power is still used in assisting
users in producing content in the form of word processing applications and spreadsheet
applications, an ever-increasing slice is now used to manage the content being created. In
fact, these days, the role of the IT professional is often more about managing user-created
content than it is about creating content itself.

This is where SharePoint 2010’s enterprise search technology enters the picture. Enterprise
search is the one feature that delivers immediate business benefit in SharePoint 2010.
Organizations have scattered content far and wide, with more and more being created
every minute of every day. Enterprise search provides a platform that can crawl and index
content from practically any source. After all, a document that nobody can find may as well
not exist. Using SharePoint 2010, organizations can easily implement a scalable search
portal where users can find the information they need.

Of course, there’s much more to enterprise search than simply crawling and indexing
content, and as you’ll see in this chapter, custom development can create powerful business
applications that leverage the capabilities of the platform.

Components of Enterprise Search
Enterprise search comprises many components—some were mentioned briefly in earlier
chapters; others have been specifically designed to provide enterprise-class search
functionality and are covered here.

Architecture
Before we delve into the components that we, as developers, are most likely to use to meet
the specific requirements of our application, let’s take a brief look at how enterprise search
works in SharePoint. Every search solution has three main elements: the front end web
server, query architecture, and crawl architecture. In that respect, SharePoint 2010 is not

424 PART IV Data Access Layer

remarkably different from MOSS 2007. However, as you’ll see when we drill down a bit,
the way in which these three elements are implemented by SharePoint Server 2010 offers
a higher degree of flexibility.

The first element in which most of our development work will be done is the front-end
web server. The web server acts as the presentation layer for our search solution and hosts
the pages and controls that will be used to capture queries and display results.

The next element in the solution is the query architecture, which consists of one or more
query servers, each responsible for directly servicing all or part of a search query. This is the
business logic layer of our search solution.

The final element is the crawl architecture. While the query architecture is responsible for
servicing end user queries, the crawl architecture is responsible for scanning connected data
sources and producing indexes of the content found. In addition to producing the index,
the crawl architecture also generates a properties database. As you’ll see when we get into
how queries are executed, there’s a big difference between the index file and the property
database.

Enhancements in SharePoint 2010
Within MOSS 2007, although enterprise search was capable of supporting a large corpus
and tens of thousands of users, the overall topology suffered a few problems. For example,
each shared service provider could use only a single index server. Notwithstanding the
hardware requirements for this single server on very large farms, this was a major issue
because the index server became a single point of failure. Another major drawback was
the physical size of the index files. Although this was somewhat mitigated by using a
number of smaller shadow index files, ultimately all the index files had to be merged into
a single master file, and the master file had to be present on all query servers in the farm.
The physical hardware required to support this was significant.

With SharePoint 2010, these problems have been addressed by subdividing the query
architecture and the crawl architecture into a number of smaller, more scalable components.
For example, rather than a single index server, SharePoint 2010 introduces the concept of
a crawl component. Using crawl components, you can add multiple index servers to a farm,
each running one or more crawl components.

Indexing Components
Now that you understand how an enterprise search solution is implemented using SharePoint
Server 2010, let’s look at some of the configurable components—starting with how the crawl
architecture can be extended by adding indexing components.

Search Connector Framework
From our perspective as software developers, one of the most significant aspects of the
crawl architecture is the Search Connector Framework, the preferred mechanism used
by the crawler component when accessing data to be indexed. The Search Connector
Framework should be familiar to you at this point in the book, since it’s based on Business
Connectivity Services (BCS), covered in Chapter 15.

A number of different properties can be attached to Business Data Connectivity (BDC)
metadata when you’re creating a search connector. At a minimum, however, the following
additions need to be made to configure a search connector properly.

Chapter 16 Enterprise Search 425

P
a

rt
 I

V

First, to make sure that the BDC adaptor is visible in the Search user interface, the
ShowInSearchUI property must be set on the LobSystemInstance object.

 1. In the BDC Explorer pane, select the LobSystemInstances node for the model, and
then click the ellipsis next to Custom Properties in the Properties window, as shown:

 2. In the Property Editor,
add a new property
named ShowInSearchUI
with a Type of System
.String and a Value of x,
as shown:

426 PART IV Data Access Layer

The next property that needs to be added is RootFinder, which is attached to the finder
method that will be called to enumerate the items to be crawled. For example, if our search
connector were crawling data in a database table, the RootFinder method would return a
list of identifiers for all items to be crawled. The crawl process would then make use of the
SpecificFinder method to perform the actual crawl of each field in the row.

 1. In the BDC Explorer pane, select the ReadList node (or whichever finder method
you’re planning to use for enumeration), and then click the ellipsis next to Custom
Properties in the Properties window.

 2. In the Property Editor, add a new property named RootFinder with a Type of
System.String and a Value of x:

To support incremental crawls, entities should include a LastModifiedTimeStamp
column. So that the crawler knows which column is the time stamp, the
LastModifiedTimeStampField property should be added to the finder method instance.

 1. Select the appropriate finder method instance, and then open the Property Editor.

 2. Add a RootFinder property as above, and then add an additional property named
LastModifiedTimeStampField with a Type of System.String and a Value of x.

You can then configure a Search Connector for a content source as follows:

 1. In Central Administration, navigate to the Search Service Application management
page. Select Content Sources from the Crawling menu on the left-hand side.

 2. Click New Content Source.

 3. In the Add Content Source page, enter a suitable name for the new content source,
and then select Line of Business Data from the list of Content Source Type options.

 4. Select the appropriate Business Data Catalog Service application, and then select
the external data source, as shown:

Chapter 16 Enterprise Search 427

P
a

rt
 I

V

Protocol Handlers and IFilters
In earlier versions of SharePoint, the index server made use of components known as
protocol handlers to connect to content to be indexed. Although protocol handlers are
still used in SharePoint 2010, their inclusion is mainly for backward compatibility. The
preferred solution for accessing external content is via the Search Connector Framework.
As a result, I won’t cover building these components in detail.

TIP In SharePoint 2010, when you’re configuring search connectors, the terminology used in the user
interface can be confusing. For example, when you’re adding a new content source, the options
available include Line of Business Data and Custom Repository. It would be reasonable to assume
that selecting Custom Repository would be the correct way to use the Search Connector Framework;
however, this isn’t the case. The Custom Repository option is used to reference custom protocol
handlers. To make matters more confusing, the user interface often refers to protocol handlers as
“custom connectors.” The thing to bear in mind is that the Search Connector Framework is a set of
extensions to BCS, and from a user interface perspective, we’re still using BCS. As you’ll see later,
the correct way to use the Search Connector Framework is to select a Content Source Type of Line
of Business Data.

Working with Content Sources
Building on our understanding of how connections are made to index content physically,
let’s look at what happens to that content as part of the indexing process.

You know that the Search Connector Framework can be used to crawl and index
content from a wide variety of sources. Each source is defined as a separate entity within
SharePoint known as a content source. As well as defining content retrieved via specific
connectors, content sources can also be used to subcategorize content within the wider
SharePoint farm. For example, a farm may use a content source to define a set of data
from a particular site collection.

428 PART IV Data Access Layer

You should be aware that it’s impossible to create overlapping content sources. For
example, it’s impossible to create a content source with a start address of http://myroot
and then create another content source with a start address of http://myroot/subsite.

TIP When configuring a search on larger farms, it’s important that you determine which content is most
likely to be updated frequently. Since content crawls run on a schedule, it’s good practice to split
the corpus into a number of smaller content sources. Doing this will allow greater control over how
frequently particular content is indexed and therefore how current search results are for that content.

As well as content sources, which define the starting point of any search crawl,
SharePoint also allows us to define crawl rules. You can use crawl rules to exclude certain
files or folders, or to specify that particular credentials should be used when accessing
particular files or folders. An important new feature in SharePoint 2010 is the ability to
use regular expressions when defining crawl rules.

Working with Managed Properties
As mentioned earlier, when content is crawled, an index of the content is created along
with a property database. Generally speaking, the index contains the main body of the
content, whereas the property database contains metadata. So to give an example, when a
Word document is crawled, the contents of the document are included in the index, and
any properties of the document such as the title, author, or the creation date are added to
the property database. The property database contains details of all metadata properties for
each item indexed by the crawler process. However, since different items may define the
same metadata in different ways, SharePoint incorporated the notion of managed properties.

A managed property is a logical grouping of crawled properties from one or more indexed
content types. For example, when an Excel spreadsheet is crawled, author metadata will
be retrieved and stored in the property database; however, if an MP3 file is crawled, artist
metadata will be retrieved. Logically, both artist and author could be grouped into a managed
property named Creator, for example. By making the grouping, it becomes possible for you
to search multiple content types using a common set of attributes without your having to
understand how those attributes map to the underlying metadata of the content.

Mapping crawled properties to managed properties is particularly important when
you’re indexing SharePoint content, since each column in a list or library is stored as a
crawled property. When it comes to properties such as Title or Created By, the mapping is
straightforward, since these properties are present on every item and therefore the mapping
is simply one-to-one. However, as you create custom content types to accommodate your
application data structure, the mapping becomes a bit more involved. Mapping crawled
properties to managed properties does not occur automatically. If, for example, you have
a list named Product containing a Product Name column and a second list named Orders
also containing a column named Product Name, these two columns will not be automatically
mapped to a managed property. You would physically need to map both crawled properties
to a new managed property.

TIP When using site columns, each instance of the column makes use of the same crawled property. So,
in our example, if Product Name was a site column, you’d need to map only one property to your
managed property rather than two.

http://myroot/subsite

Chapter 16 Enterprise Search 429

P
a

rt
 I

V

The key thing to be aware of with respect to managed properties versus crawled
properties is that only managed properties can be displayed in search results or used
for filtering or refining results.

Working with Scopes
We’ve covered how content can be split up using content sources and how metadata can
be used by created managed properties; let’s move on to consider one important use of
content sources and managed properties: the creation of scopes. For now let’s build up an
understanding of what Scopes are and why we might use them.

When a query is executed using the Query Object Model, it’s performed against the
entire search index. Sometimes this behavior doesn’t make sense for a number of reasons:
if we already know the type of content that we’re looking for, it makes sense to search
content of only that type, or if we already know which web site contains the content that
we’re looking for, it doesn’t make sense to search all web sites.

Search scopes allow us to define subsets of the search index based on a series of rules.
These rules can include only content from a particular content source, only content where
a managed property has a specific value, or only content from a specific URL. Additionally,
complex combinations of rules can be created to restrict the scope to the content that is
appropriate for our search application. For example, if we were implementing a search
feature for retrieving technical specification documents, and we knew that these documents
existed only within the engineering department web site, we could define a scope that
included only content of type technical specification and included only results from the
engineering department content source.

We could refine this example further if necessary. Let’s say that some of the technical
specifications were flagged as confidential. We could exclude those from search results by
creating a managed property that referred to the confidential flag, and then using that
managed property in a rule that specifically excluded those documents from the scope. As
you can see, by using scopes, you can increase the relevance of search results by restricting
the search area to an appropriate subset of the entire index.

Query Components
As you can imagine, the most important requirement for a search solution is the ability to
perform queries. Let’s move on to take a look through the various components available
to us as developers. As you’ll see, SharePoint 2010 delivers a number of interfaces covering
a range of scenarios.

Query Object Model
Enterprise search in SharePoint 2010 provides a Query Object Model that allows developers
to use the capabilities of search programmatically within custom applications. The core class
of the Query Object Model is the Query abstract class, which has two concrete implementations:
the FullTextSqlQuery class, which can be used to issue full-text SQL syntax queries to the
search provider, and the KeywordQuery class, which can be used to issue keyword syntax
queries. The Query Object Model can be used to query any SharePoint Search application,
whether it’s a default SharePoint Search provider or a FAST Search for SharePoint provider.

430 PART IV Data Access Layer

One thing to bear in mind is that SQL syntax queries are supported only when using
SharePoint Search. The examples that follow focus on keyword syntax queries.

NOTE For more information on SQL syntax queries, see http://msdn.microsoft.com.

Using the Query Object Model is relatively straightforward, as this example illustrates:

static void Main(string[] args)
{
 using (SPSite thisSite = new SPSite("http://localhost"))
 {
 Console.WriteLine("Enter search query");
 String queryText = Console.ReadLine();
 KeywordQuery q = new KeywordQuery(thisSite);
 q.RowLimit = 10;
 q.QueryText = queryText;
 q.ResultTypes = ResultType.RelevantResults;
 ResultTableCollection results = q.Execute();
 ResultTable relevantResults = results[ResultType.RelevantResults];
 Console.ForegroundColor = ConsoleColor.DarkGreen;
 relevantResults.Table.WriteXml(Console.Out);
 Console.ReadLine();
 }
}

Notice a few interesting things about this code sample. First, take a look at
the ResultTableCollection object that’s returned by the Execute method. The
ResultsTableCollection is an IEnumerable collection of ResultTable objects. Each query
can therefore return multiple result sets as defined by the ResultTypes property of the
Query class. In this code sample, only RelevantResults are selected, but multiple result
sets can be retrieved by performing a bitwise combination of two or more ResultType

enumerations, as shown:

q.ResultTypes = ResultType.RelevantResults & ResultType.HighConfidenceResults;

ResultTableCollection results = q.Execute();

ResultTable relevantResults = results[ResultType.RelevantResults];
ResultTable hiConfidenceResults = results[ResultType.HighConfidenceResults];

Result Types Returned by the Query Object Model Let’s take a look at the various types
of results that can be included in the ResultTableCollection:

None• The query is performed but no results are returned.

RelevantResults• A result set containing the main search results from the content
index matching the search query is returned.

SpecialTermResults • A result set containing best bet results matching the search
query is returned. Best Bet results are manually configured mappings between
keywords and specific results. For example, users may frequently search for
“permission” to find documentation on how to obtain permissions for a particular
resource. Since many documents may contain the word “permission,” it may not be

http://msdn.microsoft.com

Chapter 16 Enterprise Search 431

P
a

rt
 I

V

easy to find the relevant document. Best Bets allow the administrator to specify that a
particular document is always returned in the search results for a particular keyword.

HighConfidenceResults• High-confidence results are generated when the
keywords entered exactly match items in the search index.

DefinitionResults• A result set containing definitions for keywords matching the
search query is returned.

VisualBestBetsResults • A result set containing Visual Best Bets matching the search
query is returned. Visual Best Bets work like Best Bet results, except that an image
is displayed rather than a text result. Visual Best Bets are available only when FAST
Search is configured.

RefinementResults• A result set containing refined results matching the search
query is returned. Refinements are a new addition in SharePoint 2010 and make
use of property filters to refine search results further. The important difference in
SharePoint 2010 is that refinements now have a specific user interface, whereas
previously property filters had to be included as part of the search query. You’ll
see some examples of this later in the chapter.

Common Query Language
One of the benefits of the Query Object Model is the availability of a common query
language that works across all services supported by the Query Object Model. In practice,
two query languages are available to the Query Object Model, keyword syntax and SQL
syntax, although only keyword syntax is supported across all services.

Keyword syntax is relatively straightforward and will be familiar to users of any search
engine. In its simplest form, a query consists of one or more keywords. For example, to
return all documents containing the words “SharePoint” or “Search,” a user would enter this:

sharepoint search

If the results contained links pertaining to “MOSS 2007”, the user could exclude these
results by changing the query to this:

sharepoint search -"MOSS 2007"

If the result set contained documents relating to Google search, for example, the user
could alter the query to return only documents containing the words “SharePoint” and
“search” by changing the query like so:

+sharepoint +search -"MOSS 2007"

As you can see, basic keyword syntax is pretty intuitive.

Using Property Filters As mentioned, when crawling content, an index and a property
database are created. From the database of crawled properties, you can create managed
properties, which, as you discovered earlier, are logical groupings of crawled properties.
One of the main uses of managed properties is for filtering search results. As well as the
basic keyword syntax, the common query language allows you to use property filters to
return only results in which a managed property is set to a particular value.

432 PART IV Data Access Layer

So to pick up on the earlier example, if you wanted to return only Word documents
matching your keywords, the query could be changed to this:

+sharepoint +search -"MOSS 2007" (FileExtension="doc" OR FileExtension="docx")

This example uses the FileExtension managed property to filter the result set. One
important thing to note about property filters is that they apply to the entire result set. So,
referring back to the original keyword syntax example, this query

sharepoint search

returns all results matching either “sharepoint” or “search”. However, if the Word
document property filter is applied, here’s how it would look:

sharepoint search (FileExtension="doc" OR FileExtension="docx")

You might expect, given the syntax of keyword queries, that this query would return
results matching “SharePoint” or “search”, or having a FileExtension of doc or docx.
Instead, the query actually returns results containing either “SharePoint” or “search” where
the FileExtension is doc or docx. Effectively, the property filter is applied to the result set
of the keyword query.

There are many default managed properties in SharePoint 2010 that allow search
results to be filtered using metadata such as CreatedBy, ContentType, Department, or even
things like PictureHeight. By using these built-in properties and defining domain-specific
properties, you can easily build targeted search queries.

Federation Object Model
Earlier I discussed how the query architecture is responsible for servicing end-user queries.
As mentioned, this is done using one or more query components, right? Usually yes, but I
have to admit that I wasn’t telling the whole truth. It is true to say that queries performed
against content that’s crawled by SharePoint are serviced via query components. However,
SharePoint 2010 also incorporates the concept of federation, meaning that search queries
can be serviced directly by external search providers.

Strictly speaking, the functionality of the Federation Object Model is implemented on
the web front end, but logically it dictates how queries are performed and therefore I’ve
listed it as a query component. The Federation Object Model provides a layer of abstraction
between the front-end web parts, used to process search queries, and the physical destination
of the query server. In plain English, this means that the front-end web parts can be used to
query and retrieve results from any search engine that is supported by the Federation Object
Model. For example, it’s possible to use the out-of-the-box search web parts to perform
queries against the product catalog at Amazon.com. To take the example even further, it’s
possible to perform queries against the Amazon.com product catalog as well as the content
index from our SharePoint farm and return the highlights of the combined result set in a
single web part. Figure 16-1illustrates where the Federation Object Model sits relative to
other components.

Chapter 16 Enterprise Search 433

P
a

rt
 I

V

As illustrated, the Federation Object Model exists as an abstraction layer between web
parts that implement search functionality and the Query Object Model. As you’ve seen,
the Query Object Model provides a standard mechanism for communicating with search
service applications within SharePoint. The Federation Object Model takes this abstraction
a step further by allowing external search engines to be used to service search queries.

Out of the box, SharePoint 2010 allows you to connect to three types of locations:

SharePoint Search• The default search provider that’s installed with SharePoint.

FAST Search• An add-in search provider that enhances the capabilities of
SharePoint Search.

OpenSearch 1.0/1.1• This is where the real power of federated search comes in.
OpenSearch is an open standard for communicating with search engines. The
standard was originally proposed by Amazon.com but is now used by hundreds of
search engines under the terms of a creative commons license. By using OpenSearch,
you can query and retrieve results from practically every major search engine. As an
aside, OpenSearch is used in Internet Explorer 8 to add search providers to the
Instant Search list.

As discussed earlier, the Query Object Model is a common interface for all SharePoint
Search applications. Although the Federation Object Model makes use of distinct runtime
classes for SharePoint Search and FAST Search, namely the FASTSearchRuntime class and
the SharePointSearchRuntime class, both of these classes use the Query Object Model to
communicate with the underlying search application.

OpenSearch

Providers

Web Applications Other Applications

Search Web Parts

Federation Object Model

Query Web

Service
Query R55 Feed

Query Object Model

Search Service Application

SharePoint Search FAST Search

Figure 16-1 The Federation Object Model relative to other search components

434 PART IV Data Access Layer

It’s possible to use the runtime class directly from within our code. One of the benefits
of this is that federation location settings are defined at the search service application level
and these settings are used automatically by the runtime. This is much simpler than manually
configuring each property when using the Query Object Model.

static void Main(string[] args)
{
 Console.WriteLine("Enter search query");
 String queryText = Console.ReadLine();

 using (SPSite thisSite = new SPSite("http://localhost"))
 {
 SPServiceContext ctx = SPServiceContext.GetContext(thisSite);

 SearchServiceApplicationProxy proxy;
 proxy= SearchServiceApplicationProxy.GetProxy(ctx) as
 SearchServiceApplicationProxy;

 Location sp = new Location("LocalSearchIndex", proxy);

 SharePointSearchRuntime runtime = new SharePointSearchRuntime();
 runtime.Location = sp;
 Console.Write(runtime.SendRequest(queryText).InnerXml);
 }

}

Query Web Service
As shown in Figure 16-1, the Query Web Service communicates with SharePoint Search via
the Query Object Model. As a result of this, search federation functionality is not available
when issuing queries via web service.

static void Main(string[] args)
{
 DoSearch("sharepoint", "http://localhost/sites/Chapter16/_vti_bin/search.asmx");
 Console.ReadLine();
}

static void DoSearch(string query, string url)
{
 EndpointAddress address = new EndpointAddress(url);
 SPSearchWebservice.QueryServiceSoapClient proxy = new
 SPSearchWebservice.QueryServiceSoapClient();
 proxy.Endpoint.Address = address;
 proxy.ClientCredentials.Windows.AllowedImpersonationLevel =
 TokenImpersonationLevel.Impersonation;

 string myQueryXml = "<QueryPacket><Query><Context><QueryText type=\"STRING\">" +
 query +
 "</QueryText></Context></Query></QueryPacket>";

 string result=proxy.Query(myQueryXml);

 Console.Write(result);
}

Chapter 16 Enterprise Search 435

P
a

rt
 I

V

Query RSS API
As well as the Query Web Service, SharePoint 2010 also provides a Really Simple
Syndication (RSS) application programming interface (API) for retrieving search results.
Again, since the RSS API uses the Query Object Model, federation functionality is not
available.

Using the RSS API is relatively straightforward. It’s simply a case of building a query
string that contains the appropriate search criteria. Following are the main values for the
query string:

k• The search query text (that is, +sharepoint +search
(FileExtension=docx))

s• The search scope to use (that is, All Sites)

start • The number of the first result to return (that is, 10)

The RSS API can be accessed at http://<SiteUrl>/_layouts/srchrss.aspx. For example,
the following URL can be used to create an RSS feed for results matching “sharepoint” and
“search”:

http://<SiteUrl>/_layouts/srchrss.aspx?k=%2Bsharepoint%20%2Bsearch&s=All%20Sites

Custom Ranking Model
When determining the order of search results, SharePoint uses two types of ranking: query-
dependent ranking, also known as dynamic ranking, and query-independent ranking, also known
as static ranking. A full discussion on the nuances of these ranking models is outside the
scope of this book. However, one thing that does merit some discussion is the ability to
use custom ranking models in SharePoint 2010.

In MOSS 2007, it was possible to alter the ranking model using the Search
Administration Object Model. In effect, this meant altering the weights for particular
managed properties in the case of query-dependent ranking. The problem with this
approach was two-fold: it was possible to make changes only programmatically, and it applied
across the board to all searches performed using a particular Shared Service Provider.

With SharePoint 2010, it’s now possible to create custom ranking models using XML
and apply them on an individual query basis. For example, when using the Core Results
Web Part, setting the DefaultRankingModelId to the identifier for a custom ranking model
will apply that model to all results rendered in the web part.

Front-End Components
To make it quick and easy to generate a search user interface, SharePoint 2010 provides
a number of web parts out of the box. All of the web parts target the Federation Object
Model and therefore support many different types of search results.

Capturing Search Queries
The following web parts provide a user interface that allows the user to build search queries:

SearchBoxEx• This web part provides a basic search query interface. It provides a
scopes drop-down and a textbox for entering keywords. A link can also be provided
to a page containing an AdvancedSearchBox web part.

http://<SiteUrl>/_layouts/srchrss.aspx

436 PART IV Data Access Layer

AdvancedSearchBox • This web part expands on the user interface of the
SearchBoxEx web part to allow the user to create complex queries by selecting
from a range of options, including language and result type. The AdvancedSearchBox
web part also supports the addition of property filters.

Both query web parts work in a similar fashion—they build up a query string that is
then used when redirecting to a results page.

Displaying Search Results
Earlier we looked at the Query Object Model and the various types of results that are
returned. The main factor in deciding which web part to use to display search results is the
type of results to be displayed and the default formatting of the results. The following web
parts can be used to display search results:

CoreResultsWebPart• Used to render results of type RelevantResults.

FederatedResultsWebPart• Used to render results of type RelevantResults. The
key difference between the FederatedResultsWebPart and the CoreResultsWebPart
is that results in the latter can be paged by including a SearchPagingWebPart on
the page. Also, the FederatedResultsWebPart requires that a location is specified,
whereas, to provide backward compatibility, the CoreResultsWebPart automatically
uses the default search provider defined by the Search Service Application.

PeopleCoreResultsWebPart• Used to render the results of people searches. Derived
from the CoreResultsWebPart, results are displayed in a specific format and have
different sort options more appropriate to a people search.

TopFederatedResultsWebPart• Returns an aggregated set of top results from a
number of federated locations.

VisualBestBetWebPart• Displays results of type VisualBestBets. As described
earlier, Visual Best Bets are a feature of FAST Search, and although this web
part can be added to sites without FAST Search enabled, no results will be
displayed.

HighConfidenceWebPart• Displays results of type HighConfidenceResults as well
as SpecialTermResults.

SearchStatsWebPart• Displays information about the last query executed in the
CoreResultsWebPart.

SearchSummaryWebPart• Includes a summary of the search query. In effect this
implements “Did you mean” functionality, whereby if you start entering a keyword,
suggested keywords will be shown that will generate more results.

SearchPagingWebPart• Supports paging of the results displayed in a
CoreResultsWebPart.

Chapter 16 Enterprise Search 437

P
a

rt
 I

V

Shared Query Manager
One significant change between MOSS 2007 and SharePoint 2010 is in the way search web
parts are implemented. With SharePoint 2010, each page containing search web parts has a
single instance of the SharedQueryManager object that is shared between all web parts on
the page. Through this object we can easily create custom web parts that can hook into the
query pipeline at a few different points.

The following code snippet shows how to data bind search results to a repeater control
rather than using the traditional XSLT-based rendering approach. Such a technique is
useful if controls are required within search results that have post-back functionality. For
example, in a shopping cart application, an Add to Basket button may be required.

using System;
using System.Web.UI;
using Microsoft.Office.Server.Search.Query;
using Microsoft.Office.Server.Search.WebControls;

namespace RefinerWebPart.MySearchWebPart
{
 public partial class MySearchWebPartUserControl : UserControl
 {

 private QueryManager _manager;

 protected override void OnInit(EventArgs e)
 {
 _manager = SharedQueryManager.GetInstance(this.Page).QueryManager;
 }

 protected void Page_Load(object sender, EventArgs e)
 {
 if (!this.IsPostBack)
 {
 LocationList list = _manager[0];
 Location loc = list[0];
 Repeater1.DataSource= loc.GetResults(_manager);
 Repeater1.DataBind();
 }
 }
 }
}

Refining Search Results
The RefinementWebPart can be used to generate a series of refinement filters automatically
for a given result set. Refinements are basically property filters that are automatically derived
from a result set. So, for example, if a result set contains results of different types such as
web pages and Word documents, the refinement web part will show refinement option for
web pages or Word documents.

438 PART IV Data Access Layer

Let’s look at how the RefinementWebPart works in a bit more detail since a good
understanding of the inner workings will make it easier for you to configure.

From the following class diagram, you can see that a number of objects are involved in
rendering the RefinementWebPart. The first object to consider is the RefinementManager,
the engine that processes the configuration for the web part. Refinement configuration can
be done at the web part level, by changing the value of the Filter Category Definition property.

The Filter Category Definition property accepts XML and typically will have the
following structure:

<FilterCategories>
 <Category>
 <CustomFilters>
 <CustomFilter>
 <OriginalValue></OriginalValue>

 </CustomFilter>

 </CustomFilters>
 </Category>

</FilterCategories>

Each Category element is represented by the FilterCategory class. When the control is
rendered, a Category is displayed as a section title in the refinement panel. The FilterCategory

class defines various properties for controlling the presentation of the section title, such as the
text to be displayed and the maximum number of child elements to display. Probably the most
important property of the FilterCategory class is the FilterType; this property contains the type
name of a class derived from RefinementFilterGenerator that is used to generate a list of child
elements to appear within the section. So, for example, if the section was titled Modified

Chapter 16 Enterprise Search 439

P
a

rt
 I

V

Date, the child elements would probably be a list of dates. To generate these dates from the
result set, a ManagedPropertyFilterGenerator is used. Effectively the filter generator extracts
the values of a particular managed property from the query result set and displays the distinct
values in the refinement control.

Because managed properties may have a wide range of values, the
ManagedPropertyFilterGenerator allows results to be further grouped before
displaying them by introducing an additional ManagedPropertyCustomFilter class.
So continuing with our Modified Date example, if we wanted to show a refinement
for all documents modified within the past 24 hours rather than a list of the exact times
of each modification, we could use a ManagedPropertyCustomFilter class configured
to show results only within the past day. Here’s a typical example of custom filter
configuration:

<CustomFilters MappingType="RangeMapping" DataType="Date"
ValueReference="Relative" ShowAllInMore="False">
 <CustomFilter CustomValue="Past 24 Hours">
 <OriginalValue>-1..</OriginalValue>
 </CustomFilter>

440 PART IV Data Access Layer

 <CustomFilter CustomValue="Past Week">
 <OriginalValue>-7..</OriginalValue>
 </CustomFilter>
 <CustomFilter CustomValue="Past Month">
 <OriginalValue>-30..</OriginalValue>
 </CustomFilter>
 <CustomFilter CustomValue="Past Six Months">
 <OriginalValue>-183..</OriginalValue>
 </CustomFilter>
 <CustomFilter CustomValue="Past Year">
 <OriginalValue>-365..</OriginalValue>
 </CustomFilter>
 <CustomFilter CustomValue="Earlier">
 <OriginalValue>..-365</OriginalValue>
 </CustomFilter>
</CustomFilters>

Custom Refinement Controls
We’ve looked at the out-of-the-box refinement web part; and you should be able to see
how it can be easily configured to generate refinement options automatically using XML.
However, with SharePoint 2010, we can take the concept of refinement a step further and
create our own refinement controls. The RefinementManager object is shared between all
web parts on a page. This means that we can create a web part that picks up a reference to
this object and uses it for providing further data visualization support to refinement data.

The following code sample generates a simple web part that renders a pie chart with
slices for each type of document returned in the search results. A pie chart is shown in the
illustration that follows the code sample.

using System;
using System.ComponentModel;
using System.Linq;
using System.Web.UI.DataVisualization.Charting;
using System.Web.UI.WebControls.WebParts;
using System.Xml;
using System.Xml.Linq;
using Microsoft.Office.Server.Search.WebControls;

namespace RefinerWebPart.VisualWebPart1
{
 [ToolboxItemAttribute(false)]
 public class MyWebPart : WebPart
 {
 private Microsoft.Office.Server.WebControls.Chart _chart;
 protected override void CreateChildControls()
 {
 _chart = new Microsoft.Office.Server.WebControls.Chart();

Chapter 16 Enterprise Search 441

P
a

rt
 I

V

 _chart.Width = 120;
 _chart.Height = 120;

 ChartArea area = new ChartArea("File Types");

 _chart.ChartAreas.Add(area);
 _chart.EnableViewState = true;
 Controls.Add(_chart);

 }

 protected override void OnPreRender(EventArgs e)
 {
 RefinementManager mgr = RefinementManager.GetInstance(this.Page);

 XmlDocument refinements = mgr.GetRefinementXml();
 if (refinements != null)
 {
 Series theSeries = new Series();
 theSeries.ChartType = SeriesChartType.Pie;

 XDocument doc = XDocument.Parse(refinements.OuterXml);

 var values = from documentTypes in doc.Descendants("Filter")
 where documentTypes.Parent.Parent.
Attribute("ManagedProperty").Value == "FileExtension"
 && documentTypes.Element("Count").Value != "0"
 && documentTypes.Element("Count").Value != string.Empty
 select new
 {
 Name = documentTypes.Element("Value").Value,
 Count = documentTypes.Element("Count").Value,
 Url = documentTypes.Element("Url").Value
 };

 foreach (var docType in values)
 {
 int point = theSeries.Points.AddY(docType.Count);
 theSeries.Points[point].Label = docType.Name;
 theSeries.Points[point].Url = docType.Url;
 }

 if (theSeries.Points.Count > 0)
 _chart.Series.Add(theSeries);
 }
 }
 }
}

442 PART IV Data Access Layer

Summary
In this chapter, we looked at how enterprise search works in SharePoint 2010. We’ve also
looked at the rich object models that are available to us as developers that allow us to
leverage the powerful capabilities of the platform.

17
CHAPTER

443

User Profi les
and Social Data

In the beginning, there was Hypertext Markup Language (HTML), a language that allowed
anybody with a text editor to create pages and post them on the Internet for everyone to
see. Back then, the Internet was all about finding information. Surfing the Web, as it came
to be known, was a pretty solitary pursuit. Fast-forward 20 years and things have changed
dramatically. With social computing giants such as Facebook, MySpace, and Twitter, the
Internet is no longer just a vast electronic library; it has become a communications
platform allowing for rich social interactions with contacts the world over.

Many organizations, aware of the growing use of social computing sites, seek to block
access to such sites because they believe that employee productivity will be affected as
employees are distracted from important work tasks. Although there may be a case for this
argument, a flip side might not be so apparent. Social computing, by its very nature, is about
people, and every organization is reliant on one thing above all else: customers. By blocking
access to social computing sites, an organization is missing the opportunity to communicate
with customers to understand how they feel about its products and services. If an angry mob
on Facebook is cursing your company’s latest product, surely it’s better to know about it.
These people won’t take the time to call to tell you that the power light on your latest
electronic gizmo is irritatingly bright; they’ll simply take their business elsewhere. Is having
access to this kind of information really a distraction from more important tasks?

The social computing phenomenon has taken over the Internet for one simple reason:
it works—not just as a tool for sharing holiday snaps and personal gossip, but as a means of
identifying and accessing a community of experts in any given field and getting answers to
questions that would otherwise be impossible to answer. No organization can hire every
smart person in a given field, but social computing allows organizations to tap into the
skills of these people as and when required.

So what’s this got to do with SharePoint 2010? Setting aside the question of whether
organizations should allow access to public social networking sites, I’m sure we can all agree
that social computing is an effective way to share knowledge and to identify and communicate
with specialists in a given field. Such capabilities are just as useful within an organization as
they are outside. Everybody has a unique set of skills and interests that often stretch far
beyond their job description, but this knowledge goes untapped because it can’t be identified.

444 PART IV Data Access

SharePoint 2010 offers a number of features to allow users to build and manage their
own personal profiles. User profiles are accessible throughout an organization and make it
possible to identify users with particular skills or interests. Blogs and wikis make it possible
for users to create and collaborate on content.

In an age in which products and services have become increasingly commoditized, the
key to building and maintaining competitive advantage is organizational intelligence. Social
computing is a viable answer. In this chapter, you’ll see how this thread is woven into the
fabric of the SharePoint 2010 platform.

Folksonomies, Taxonomies, Tagging, and Rating
When it comes to structuring information, you can employ one of two approaches: You can
either organize the information within a well-defined and widely understood hierarchical
structure so that users know where to look for something, or you can build an index that
can be scanned to find relevant content.

There are pros and cons to both approaches. In the hierarchical approach, content
creators must understand and adhere strictly to the hierarchy; changing the structure over
time causes confusion. In the indexed approach, the usefulness of the index will vary
depending on the context of the searcher. For example, if a collection of sales invoices are
indexed by date, but the searcher wants to retrieve all invoices for a particular customer,
the index won’t be much help.

In the past, SharePoint has adopted a hierarchical approach to information architecture.
Recognizing that such an approach doesn’t address every requirement, search functionality
has traditionally picked up the slack. However, this combination of approaches doesn’t
address the biggest downsides of both techniques: rigid hierarchies offer no flexibility and
deviation causes confusion, whereas an index that is useful to a broad audience cannot truly
take searcher context into account. Useful search results are lost in a deluge of irrelevant
matches.

With SharePoint 2010, in addition to the traditional approaches to managing content,
the power of social computing has been leveraged in the form of tagging and rating. Rating
will be familiar to anyone who’s used Amazon or eBay: users have the option to rate content.
Consolidated ratings are then visible to other users of the content, and over time these
ratings become an indicator of the content’s usefulness. Such ratings can then be used in
conjunction with an index to rank useful content more prominently within search results.

While the rating approach works well, it doesn’t address the issues of relevance and
searcher context. This is where tagging comes in. Each page in SharePoint 2010 has a Tags
& Notes button in the upper-right corner, as shown next. Users can click this button to add
their own tags to each page. These tags are then shown in the user’s profile page and can
be used in search results to find content.

Chapter 17 User Profi les and Social Data 445

P
a

rt
 I

V

In addition to allowing user-defined tags, SharePoint 2010 also provides a Managed
Metadata column that can be added to lists and libraries. The Managed Metadata column
allows users to select from a collection of predefined tags. (The Managed Metadata column
is covered in more detail in Chapter 15.)

You know that there are two distinct approaches to tagging content: administrator-
defined and user-defined. After content is tagged using administrator-defined terms, the
content can be organized into a taxonomy. Generally speaking, taxonomy is a well-defined
system of classification, and it’s a word of which most of us are aware.

So what is folksonomy? Coined by information architecture guru Thomas Vander Wal,
a folksonomy is a system of classification based on the collaborative collection of keywords
attached to documents. As more users attach their own specific tags to a document, more
and more contexts can be taken into account when classifying the content. Incorporating
this context into search results and other features makes it easier for users to find what they
are looking for, and at the end of the day, that is the purpose of any classification system.

In a folksonomy, as users view content, they do so from their own perspective, and as a
result the tags they attach are unique to their perspective. For example, a document may
contain financial forecasts for sales of a particular product. Someone viewing the document
from a financial perspective may tag the document “Q3 Forecast,” whereas someone viewing
the document from a marketing perspective may tag the document “Widget Sales Projections.”
These are pretty obvious examples, but what about somebody viewing the document from a
corporate communications perspective? They may be more interested in the layout of the
document than the actual content and may tag the document “Corporate Logo.”

User Profile Service Application
As mentioned, users of the SharePoint 2010 platform can create and use their own user
profiles. Although the primary interface for managing these profiles at the user level is the
My Sites site collection, the actual user profile content is maintained and managed by the
User Profile Service application. As well as storing user profile information, the User Profile
Service application provides a number of additional features that enable social computing
on SharePoint 2010.

Synchronization
SharePoint 2010 is an enterprise product that’s designed to be installed in organizations
with an existing infrastructure for supporting many users. One common feature of such an
infrastructure is the presence of a user database. In the case of the Windows platform, such
a user database is provided by Active Directory; if the organization is using a Sun-based
infrastructure, the user database may exist as a Sun ONE LDAP (Lightweight Directory
Access Protocol) server.

One thing that all user database implementations have in common is that they contain
information on users, and it is likely that the same user accounts will be used to access
content within a SharePoint farm. Rather than duplicating user information between the
user database and SharePoint, the User Profile Service provides full two-way synchronization
capabilities that allow user information to be synchronized automatically between systems.

446 PART IV Data Access

User Properties
Active Directory and its LDAP counterparts from other vendors provide a user database that
can be extended to include additional information. Custom fields can be added to user
accounts, which can then be synchronized with SharePoint. However, the synchronization
process is not limited to a single data source. User profiles in SharePoint can include user
properties from a number of different data sources. For example, while data such as username,
first name, and last name will most likely come from an LDAP system, other properties such
as past projects or cost center will likely come from a line-of-business application. By making
use of Business Connectivity Services (covered in Chapter 15), the User Profile Service can
import data from practically any data source and include it within a user profile.

User properties can be added using code, as this snippet shows:

void AddUserProperty(string siteUrl)
 {
 using (SPSite site = new SPSite(siteUrl))
 {
 SPServiceContext ctx = SPServiceContext.GetContext(site);

 UserProfileConfigManager mgr = new UserProfileConfigManager(ctx);
 UserProfileManager upm = new UserProfileManager(ctx);
 ProfilePropertyManager ppm = mgr.ProfilePropertyManager;

 //Create Core property
 CorePropertyManager cpm = ppm.GetCoreProperties();
 CoreProperty p = cpm.Create(false);
 p.Name = "MyName";
 p.Type = "string";
 p.Length = 50;
 p.DisplayName = "MyDisplayName";
 cpm.Add(p);

 //Create ProfileType property
 ProfileTypePropertyManager ptpm =
ppm.GetProfileTypeProperties(ProfileType.User);
 ProfileTypeProperty pt = ptpm.Create(p);
 pt.IsVisibleOnEditor = true;
 ptpm.Add(pt);

 //Create ProfileSubType property
 ProfileSubtypePropertyManager pspm =
upm.DefaultProfileSubtypeProperties;
 ProfileSubtypeProperty pst = pspm.Create(pt);
 pst.DefaultPrivacy = Privacy.Public;

Chapter 17 User Profi les and Social Data 447

P
a

rt
 I

V

 pspm.Add(pst);
 }
 }

Notice a few things about this code. At first glance, it may seem that we’re adding
the same property many times: first, using the CorePropertyManager, then with the
ProfileTypePropertyManager, and finally with the ProfileSubtypePropertyManager. In
fact, user properties are multi-layered, and each layer is managed using its own object.
The following class diagram shows the objects involved.

Subtypes
Subtypes are an interesting addition in SharePoint 2010. They allow user profiles to be
grouped. For example, within an organization, not all users may use a particular line-of-
business application, and for those users, it doesn’t make sense to include data from that
application within the user’s profile (since it would be blank anyway). By creating a subtype
for users of the line-of-business application, user properties from the application can be
added only to members of the subtype.

448 PART IV Data Access

The following code shows how to add profile subtypes:

void AddProfileSubtype(string siteUrl, string name,string description)
 {
 using (SPSite site = new SPSite(siteUrl))
 {
 //Get the manager object
 SPServiceContext ctx = SPServiceContext.GetContext(site);
 ProfileSubtypeManager mgr = ProfileSubtypeManager.Get(ctx);

 //Add a new user subtype
 ProfileSubtype newSubtype = mgr.CreateSubtype(name,
 description,
 ProfileType.User);
 //list the subtypes
 Console.WriteLine("SubTypeID\tName\t\tDisplayName");
 Console.WriteLine(new string('=',60));
 foreach (ProfileSubtype subType in
mgr.GetSubtypesForProfileType(ProfileType.User))
 {
 Console.WriteLine ("{0}\t\t{1}\t{2}",subType.SubtypeID,
subType.Name,
 subType.DisplayName);
 }
 //delete the new type
 newSubtype.Delete();
 }
 }

Audiences
Audiences are a useful feature introduced in SharePoint 2007. When it comes to building
content management systems, or indeed any system for presenting information to end
users, it’s important that you display the right information to the right users. On the
surface, this may seem like a job for application security—after all, security is partly about
determining whether a user is authorized to perform a particular action.

In some circumstances, this is the case; however, consider the following scenario: A
company provides an intranet application that displays relevant data and links to commonly
used applications. Users in one department are likely to have requirements different from
users in another. Both groups of users have access to all of the information, but certain
items are more relevant to each group and should therefore be featured on the intranet
site. Clearly, this is not a security requirement, because both groups are authorized to view
all content. It’s more of a personalization requirement, and this is where audiences come in
useful. By applying criteria to user properties, audiences can be easily compiled and used
for personalizing content. For example, to pick up on our line-of-business subtype, all users

Chapter 17 User Profi les and Social Data 449

P
a

rt
 I

V

who have a particular cost center code can be grouped into a single audience. Content
related to that cost center can then be displayed where appropriate.

Organizations
Although user profiles can contain properties that define where a specific user sits within
an organizational hierarchy, sometimes it’s more useful to know how an organization is
structured at a higher level. For example, if a user reports to a marketing manager, it’s
reasonable to assume that the user works within the marketing organization. However,
if you’re looking for information in the marketing organization itself, this information
doesn’t help you.

If, however, the marketing organization has its own profile, you can easily locate the
information that you need and understand how the marketing organization fits within
the wider enterprise structure. Organization profiles, new in SharePoint 2010, can also
use custom properties and subtypes in the same way as user profiles.

Adding properties to organization profiles is similar to adding properties to user
profiles—the main difference is the manager objects that are used. Here’s an example:

void AddOrganizationProperty(string siteUrl)
 {
 using (SPSite site = new SPSite(siteUrl))
 {
 SPServiceContext ctx = SPServiceContext.GetContext(site);

 UserProfileConfigManager mgr = new UserProfileConfigManager(ctx);
 OrganizationProfileManager opm = new OrganizationProfileManager(ctx);
 ProfilePropertyManager ppm = mgr.ProfilePropertyManager;

 //Create Core property
 CorePropertyManager cpm = ppm.GetCoreProperties();
 CoreProperty p = cpm.Create(false);
 p.Name = "MyOrgName";
 p.Type = "string";
 p.Length = 50;
 p.DisplayName = "MyOrgDisplayName";
 cpm.Add(p);

 //Create ProfileType property
 ProfileTypePropertyManager ptpm =
ppm.GetProfileTypeProperties(ProfileType.Organization);
 ProfileTypeProperty pt = ptpm.Create(p);
 pt.IsVisibleOnEditor = true;
 ptpm.Add(pt);

 //Create ProfileSubType property
 ProfileSubtypePropertyManager pspm =

450 PART IV Data Access

opm.DefaultProfileSubtypeProperties;
 ProfileSubtypeProperty pst = pspm.Create(pt);
 pst.DefaultPrivacy = Privacy.Public;
 pspm.Add(pst);
 }
 }

My Sites
One of the first steps in configuring user profiles for use within SharePoint is to set up a My
Sites host by following these steps:

 1. In Central Administration, under Application Management, create a new Site
Collection using the My Site Host template from the Enterprise category.

 2. Once the My Sites site collection is up and running, we can configure the User Profile
Service application and use it to create sites for each user. In Central Administration,
choose Manage Service Applications | User Profile Service Application | Setup My
Sites. In the My Site Host Location text box, enter the URL of the site collection that
we just created:

Chapter 17 User Profi les and Social Data 451

P
a

rt
 I

V

 3. As well as providing a user interface for managing user profile information, users
have the option of creating their own personal sites. This is covered in a bit more
detail later. However, since each personal site is effectively a site collection in its
own right, before users can create these sites, self-service site creation must be
enabled on the web application that hosts the My Sites site collection. To enable
self-service site creation, from Central Administration, select Application
Management. In the Site Collections section, select Configure Self-Service Site
Creation and then select the On option, making sure that the My Site host web
application is selected first.

TIP Self-service site creation is defined at the web application level. Creating a separate web application
to host My Sites will allow greater administrative control over the sites that can be created within a
SharePoint farm. If My Sites is enabled on an existing web application, users with the appropriate
permissions will be able to create other types of site collections, potentially leading to fragmented
distribution of content and an ineffective use of resources.

 4. Now that we’ve configured My Sites, users can
manage their profiles and access their personal
sites by clicking their username in the upper-
right corner of the page and then selecting My
Profile:

 After selecting My Profile, the user is automatically
directed to the My Sites site collection. Across the
top of the page are three links: My Profile, My
Network, and My Content. Let’s take a look at
each of these.

452 PART IV Data Access

My Profile
The My Profile page contains a number of useful features and is the main access point for
social computing in SharePoint 2010. Users can add to their profile information, including
a personal description and a picture as well as contact details. These are pretty standard
features that you’d expect to find in any user profile application. However, SharePoint 2010
also includes new features such as Ask Me About, where a user can list subjects in which
they have relevant expertise. These subjects are then listed on the user’s profile page, and
other users can ask questions based on the subject by clicking a hyperlink. This feature is
not trivial—this additional data is included in the people search index, making it possible
for others users to search for experts in a particular field and easily ask questions. Bearing
in mind that the key aim of social computing in the enterprise is the development of
organizational intelligence, you can begin to see how this feature can be very powerful.

Ask Me About is just one property that users can complete on their profile. Other data
such as Skills and Interests can be used in a similar manner. In effect, these tags are used as
metadata to help users find other users who can assist with problems or who are interested
in a particular topic regardless of where they sit within an organizational hierarchy. The
properties that are available within the Edit Profile page are defined by the User Profile
Service application and can therefore be extended to meet any requirement.

Earlier I discussed taxonomies and the Managed Metadata column. You can add profile
properties that make use of the managed metadata column, as shown below, allowing users
to select from a range of predefined tags. Functionality such as this is useful for allowing
users to manage their geographic location—and, again, this data can be used to refine
search results.

Chapter 17 User Profi les and Social Data 453

P
a

rt
 I

V

Status messages work similarly to Twitter, the only difference being that the messages
are not posted to the public Internet. A user can enter short messages that are then visible
by all users viewing the user’s profile; these messages are automatically shown on the profile
page of other users in their network (more on networks later).

NOTE I’ve got a confession to make when it comes to Twitter. When I was first introduced to the service, I
thought, “Who’s got the time to waste posting inane comments on the Web that nobody will ever read?”
I was missing the point. Status updates in SharePoint or Twitter provide a record of your thoughts,
ideas, musings, and findings over time, which can be referred to at a later date. Not only that,
but they help to spread information quickly throughout an organization—or, in the case of Twitter,
throughout the world. Everything you ever type is stored, indexed, and made available for searching.
Why is this a good thing? How many times do you find yourself saying, “I vaguely remember a
conversation about that, but I can’t remember the details”? Now you don’t need to remember
the details—“Note to self” has been superseded by status update.

Activities
Most things that you do within SharePoint appear in your activity feed. Whether it’s creating
a new document or updating your user profile, it all ends up in your activity feed, and
anybody who’s interested can view it. In a sense, the activity feed is like the news feed in
Facebook.

Status Messages
As well as providing links to a user’s profile information, the My Profile page also includes
a number of social computing features that are new to SharePoint 2010. Probably the most
obvious of these is the status message, shown next:

454 PART IV Data Access

As developers, we’re likely to be involved in writing data to and retrieving data from
the activity feed for our custom applications. Before we get into some code snippets that
illustrate how we can tackle these tasks, let’s look at how activities are represented by the
object model:

The ActivityManager class is used to manage the ActivityApplications that are registered
with the User Profile Service. Configuration of a custom application that adds events to the
activity feed will begin with the ActivityApplication class:

public ActivityApplication CreateOrGetApplication(ActivityManager mgr,
 string applicationName)
{
 ActivityApplication app = mgr.ActivityApplications[applicationName];
 if (app == null)
 {
 app = mgr.ActivityApplications.Create(applicationName);
 app.Commit();
 app.Refresh(true);
 }
 return app;
}

Each application will have one or more ActivityTypes, where an ActivityType is the type
of event that’s written to the feed. For example, if we develop a custom helpdesk application
and we want activities to be written when a case is assigned to a user, we would add an
ActivityType for CaseAssignment. We may also add ActivityTypes for CaseClosed or
ReachedSLATimeout.

public ActivityType CreateOrGetActivityType(ActivityApplication app,
 string typeName,
 string resourceFile,
 string resourceName)
{

Chapter 17 User Profi les and Social Data 455

P
a

rt
 I

V

 ActivityType theType = app.ActivityTypes[typeName];
 if (theType == null)
 {
 theType = app.ActivityTypes.Create(typeName);
 theType.ActivityTypeNameLocStringResourceFile = resourceFile;
 theType.ActivityTypeNameLocStringName = resourceName;
 theType.IsPublished = true;
 theType.IsConsolidated = true;
 theType.Commit();
 theType.Refresh(true);
 }
 return theType;
}

Once we’ve defined our ActivityType, the next part of the configuration is the
ActivityTemplate, which defines the template that will be populated when adding
an event using our custom ActivityType. Each ActivityType may have one or more
ActivityTemplates. Here’s an example:

public ActivityTemplate CreateOrGetActivityTemplate(ActivityType type,

 string resourceFile,

 string resourceName,

 bool isMultiValued)

{

 ActivityTemplate theTemplate = type.ActivityTemplates[ActivityTemplatesCollection.

CreateKey(isMultiValued)];

 if (theTemplate == null)

 {

 theTemplate = type.ActivityTemplates.Create(isMultiValued);

 theTemplate.TitleFormatLocStringResourceFile = resourceFile;

 theTemplate.TitleFormatLocStringName = resourceName;

 theTemplate.Commit();

 theTemplate.Refresh(isMultiValued);

 }

 return theTemplate;

}

Both ActivityType and ActivityTemplate objects make use of resource files to retrieve the
content that is included in a user’s activity feed. This allows the content to be localized based
on the user’s language preferences.

For the ActivityType object, the resource file is configured using the following
properties:

ActivityType. ActivityTypeNameLocStringResourceFile• Contains the name of the
resource file. All resource files are stored in the %SPRoot%\Resources folder.

456 PART IV Data Access

ActivityType.ActivityTypeNameLocStringName• Contains the name of a data
element within the resource file that defined the name that will be displayed for
the ActivityType.

A sample resource file containing details for an ActivityType might look like this:

<root>
 <data name="My_Activity_Key">
 <value xml:space="preserve">My Sample Activity Type Name</value>
 </data>
</root>

For the ActivityTemplate object, configuration is performed by using two similar
properties:

ActivityTemplate.TitleFormatLocStringResourceFile• Contains the name of the
resource file.

NOTE Resource filenames should not contain the path or extension. For example, a resource file named
myresources.en-us.resx would be used by setting the appropriate property to myresources.

ActivityTemplate.TitleFormatLocStringName• Contains the name of the data
element within the resource file that contains the event template.

A sample resource file containing two activity templates, one with a single value and
another multi-value template, might look as follows:

<root>
 <data name="My_SingleValue_Template">
 <value xml:space="preserve">
 {Owner} has performed a new activity: {Link}
 </value>
 </data>
 <data name="My_MultiValue_Template">
 <value xml:space="preserve">
 {Owner} has performed {Size} new activities: {List}
 </value>
 </data>
</root>

TIP Templates can contain entity escaped HTML if additional formatting is required.

Making use of these functions, we can write some setup code that adds the appropriate
ActivityType and ActivityTemplate elements as follows:

static void Main(string[] args)
{

Chapter 17 User Profi les and Social Data 457

P
a

rt
 I

V

 string siteName = "http://localhost";
 using (SPSite site = new SPSite(siteName))
 {
 SPServiceContext context = SPServiceContext.GetContext(site);
 UserProfileManager profileManager = new UserProfileManager(context);
 string username = Environment.UserDomainName + "\\" + Environment.UserName;

 UserProfile p = profileManager.GetUserProfile(username);
 ActivityManager manager = new ActivityManager(p,context);

 Program prog = new Program();
 string applicationName = "MyHelpdeskApp";
 string resourceFile = "MyHelpdeskAppResources";
 prog.Setup(manager, applicationName,resourceFile);
 }
}
public void Setup(ActivityManager mgr, string applicationName,
 string resourceFile)
{
 mgr.PrepareToAllowSchemaChanges();
 ActivityApplication app = CreateOrGetApplication(mgr, applicationName);
 ActivityType assignedType = CreateOrGetActivityType(app, "CaseAssignment",
 resourceFile, "MyHelpdesk_Assignment_Display");
 ActivityTemplate assignedSVT = CreateOrGetActivityTemplate(assignedType,
 resourceFile, "MyHelpdesk_Assignment_SVT", false);
 ActivityTemplate assignedMVT = CreateOrGetActivityTemplate(assignedType,
 resourceFile, "MyHelpdesk_Assignment_MVT", true);
 ActivityType closedType = CreateOrGetActivityType(app, "CaseClosed",
 resourceFile, "MyHelpdesk_Closed_Display");
 ActivityTemplate closedSVT = CreateOrGetActivityTemplate(closedType,
 resourceFile, "MyHelpdesk_Closed_SVT", false);
 ActivityTemplate closedMVT = CreateOrGetActivityTemplate(closedType,
 resourceFile, "MyHelpdesk_Closed_MVT", true);
 ActivityType timeoutType = CreateOrGetActivityType(app, "ReachedSLATimeout",
 resourceFile, "MyHelpdesk_Timeout_Display");
 ActivityTemplate timeoutSVT = CreateOrGetActivityTemplate(timeoutType,
 resourceFile, "MyHelpdesk_Timeout_SVT", false);
 ActivityTemplate timeoutMVT = CreateOrGetActivityTemplate(timeoutType,
 resourceFile, "MyHelpdesk_Timeout_MVT", true);
}

If we run this code sample and then click the Edit My Profile link on the My Profile
page for a user, we’ll see that three additional options in the Activities I Am Following

458 PART IV Data Access

section, as shown next. These new activities correspond to the ActivityType objects that we
configured in our code sample.

Now that we know how to configure custom activities for our applications, let’s move on
to take a look at how to make use of these configured activities. The following class diagram
shows the classes that are involved in creating activity events:

Using ActivityEvents is a two-step process. First, the events are generated and written to
the appropriate user’s activity feed using the ActivityFeedGatherer. The ActivityFeedGatherer
object makes use of batching to write events. This allows for scheduled jobs to scan periodically
for changes and write activity events in batches while at the same time allowing for more
traditional event-driven activity generation. For example, in the case of our helpdesk
application, the CaseCreated event would most likely be event-driven, whereas the
SLATimeout would probably be generated by a scheduled task.

public ActivityEvent GenerateActivityEvent(ActivityManager mgr,
 UserProfile p,
 ActivityType activityType,
 string nameText,
 string siteUrl)
{

Chapter 17 User Profi les and Social Data 459

P
a

rt
 I

V

 Entity owner = new MinimalPerson(p).CreateEntity(mgr);
 Entity publisher = new MinimalPerson(p).CreateEntity(mgr);
 ActivityEvent activityEvent = ActivityEvent.CreateActivityEvent(mgr,
 activityType.ActivityTypeId, owner, publisher);
 activityEvent.Name = activityType.ActivityTypeName;
 activityEvent.ItemPrivacy = (int)Privacy.Public;

 Link link = new Link();
 link.Href = siteUrl;
 link.Name = nameText;
 activityEvent.Link = link;
 activityEvent.Commit();

 return activityEvent;
}

public void RaiseActivityEvent(ActivityManager mgr,
 UserProfile p,
 ActivityType type,
 string nameText,
 string siteUrl)
{
 List<ActivityEvent> events=new List<ActivityEvent>();
 ActivityEvent newEvent = GenerateActivityEvent(mgr, p, type, nameText, siteUrl);
 events.Add(newEvent);
 ActivityFeedGatherer.BatchWriteActivityEvents(events,0,1);

 WriteMulticastEvents(mgr, events, newEvent);
}

The second step in the process, once the events have been written to the user’s activity
feed, is to broadcast the events to colleagues who have elected to receive them. This is where
the terminology gets a bit confusing and warrants some further explanation. Looking at the
code above for GenerateActivityEvent, we can see that the CreateActivityEvent method accepts
two properties of type Entity: owner and publisher.

First, let’s consider what an Entity is. An Entity object represents the owner or publisher
of a feed. The feed part is significant. Earlier you learned that each user has an activity feed
and that other users can subscribe to that feed; when we’re generating activity events, the
owner should always be the owner of the feed to which we’re trying to add the event.

Second, now that we’re clear on what an Entity is and the significance of the owner, let’s
take a look at the publisher. You’d think that publisher would be the user or application
that published the event. In some cases, this is true, but as a rule of thumb the assumption
doesn’t work. A more accurate definition of publisher is the user who is the target of the
activity—or maybe an easier way to picture it is the user whose activity feed will contain
the activity.

460 PART IV Data Access

These two properties are significant when looking at broadcasting events to subscribers.
Consider this template as an example:

 <data name="MyHelpdesk_Closed_SVT" xml:space="preserve">
 <value>{Publisher} has closed a case: {Link}</value>
 </data>

This same template will be used for the event when written to the originating user’s activity
feed as well as the My Network feed of colleagues who have elected to receive updates.
We’re using the {Publisher} property in the description because, unless it is changed
programmatically, the publisher will remain the user that originated the event. If instead
of {Publisher} we were to use {Owner}, the value would change to the user viewing the My
Network feed. {Publisher} is the originator or source of the activity, whereas {Owner} is
the current consumer of the feed

In the preceding code snippet, notice that when calling GenerateActivityEvent, both
the owner and the publisher are set to the same user. This is necessary to have the activity
appear in the user’s activity feed.

The following code broadcasts an ActivityEvent to all subscribed colleagues:

private static void WriteMulticastEvents(ActivityManager mgr,
 List<ActivityEvent> events, ActivityEvent newEvent)
{
 List<long> ownerIds = new List<long>();
 Dictionary<long, MinimalPerson> owners;
 Dictionary<long, List<MinimalPerson>> colleaguesOfOwners;
 Dictionary<long, List<ActivityEvent>> eventsPerOwner;
 List<ActivityEvent> multicastEvents;

 ownerIds.Add(newEvent.Owner.Id);

 ActivityFeedGatherer.GetUsersColleaguesAndRights(mgr, ownerIds, out owners,
 out colleaguesOfOwners);

 ActivityFeedGatherer.MulticastActivityEvents(mgr, events, colleaguesOfOwners,
 out eventsPerOwner);

 ActivityFeedGatherer.CollectActivityEventsToConsolidate(eventsPerOwner,
 out multicastEvents);

 ActivityFeedGatherer.BatchWriteActivityEvents(multicastEvents, 0,
 multicastEvents.Count);
}

The important thing to note about this code snippet is that it uses the same
BatchWriteActivityEvents method to generate the subscriber events. The main difference
between the events being generated by this process and the original event is that the
entities that represent the owner and the publisher will be different. The owner will be the
colleague who has elected to subscribe, whereas the publisher will be the originating user.

Chapter 17 User Profi les and Social Data 461

P
a

rt
 I

V

Memberships
Memberships in SharePoint 2010 are a central component of fostering community-based
social computing. Two types of membership are built in:

Distribution List Membership• These groups and members are retrieved directly
from Active Directory as part of the User Profile synchronization process.

SharePoint Site Membership• These groups can be created within individual sites
and are commonly used for assigning rights and permissions.

As well as built-in membership types, you can create custom groups programmatically
and add users to those groups. When developing social computing applications, this
functionality is very useful. Here’s an example:

void CreateMembership(UserProfileManager mgr, UserProfile p,
 string groupName, string mailName,
 string description, string url, string source)
{
 MemberGroupManager groupManager = mgr.GetMemberGroups();
 Guid policyId=PrivacyPolicyIdConstants.MembershipsFromDistributionLists;
 MemberGroup newGroup = groupManager.CreateMemberGroup(policyId,groupName,
 mailName, description, url, source);

 p.Memberships.Create(newGroup, MembershipGroupType.UserSpecified, groupName,
 Privacy.Organization);
}

Tags and Notes
As mentioned, the ability to add tags and notes to SharePoint content is available by default
for most content. When tags and notes are added, although they are visible on the page
containing the content, the main reason for adding them is to make the content easier to
find for the user attaching the tags and notes. This functionality is implemented using the
Tags and Notes section of the My Profile site. In addition, tags and notes can be added to
external content such as public web sites or other web-based content not managed by
SharePoint.

My Network
The My Network application is another key social computing element of SharePoint 2010.
Although the My Profile page allows users to manage their own profiles, the My Network
page provides a consolidated view of relevant data that’s specific to the current user. For
example, by specifying additional users as colleagues, content from their activity feeds will
automatically become visible in the user’s My Network page. By the same token, if interests
are specified in a user profile, when any content is tagged matching those interests, a link
to the content is also available on the My Network page.

The My Network application is where social computing works its magic in SharePoint
2010. By making use of user profile data, users have access to information that is relevant
to them and their interests at any time. The net effect of this is that users converge into a

462 PART IV Data Access

collaborative community, where ideas and information can flow freely among interested
members. Documents move from being a source of reference to a focus for collaborative
endeavor.

My Content
In a sense, SharePoint has come full circle. Originally with SharePoint Team Services 2001,
the aim was to provide a web-based alternative to the ubiquitous network file share. This
allowed teams to collaborate on documents with the benefit of the additional context
information that could be made available using HTML. So rather than a document on a
network share named ProjectHooHaTechnicalSpec.doc, the document could be stored in
a document library named Technical Specifications, on a team site name Project HooHa.
The team site could contain other relevant information such as an overview of the project
or a list of team members and relevant contacts. Of course, all of this information could
still be contained in various documents on a network file share, but using a web application
made it much simpler to keep together related information and to add context easily in the
form of lists and other content.

To get back to SharePoint 2010, clearly this functionality has moved on over the years.
The same is also true of the requirements of knowledge workers. Nowadays, it is common
practice for users within a large organization to have a dedicated network file share that can
be used for storing documents. Using network file shares facilitates backups and ensures
that documents can be made available regardless of the physical hardware that the user is
using. My Content takes this idea a step further and applies the rationale behind SharePoint
Team Services to all user-generated content. Rather than storing content on a personal file
share, all documents can be uploaded to a user’s My Content site, where they can be freely
shared with anybody within an organization.

Summary
Social computing is not a checkbox on a feature list. Having the ability to engage in social
computing does not deliver on its true potential unless, as a concept, social computing is
embraced by the organization. Of course, for most organizations, embracing a change will
be gradual and will require some incremental payback if it is to succeed. SharePoint 2010
accommodates this requirement by providing features that are immediately useful, such as
My Content, People Search, and Audiences. As more and more users realize the utility of
these features and become engaged in the creation of content, other social computing
features such as tagging, notes, and user profiles will become more useful. The final step in
truly adopting social computing within an organization is the user-driven creation of blogs
and wikis and the widespread use of features such as status messages and activity feeds.

For us, as developers, the challenge is to gauge where social computing fits within our
organization currently and to predict how it will feature in the future. By leveraging the
capabilities of the SharePoint 2010 platform, we can easily incorporate social computing
features that will deliver immediate benefits to our users while allowing for future
improvements that will take advantage of additional platform functionality as organization
adoption increases.

18
CHAPTER

463

Business Intelligence

Business Intelligence (BI) is an interesting term. You could ask ten people within ten different
organizations what it means in practice, and you’d probably get ten completely different
answers. That’s probably a good thing though, because by its very nature, BI is specific to
a particular business. One organization may see BI as the analysis of sales and manufacturing
data for a range of products being produced, whereas another organization—and this
is particularly true in the public sector—may see BI as the analysis of social and
demographic data.

Although at a practical level, implementations of BI are usually quite different, most
organizations agree that as a general concept, BI is an important part of day-to-day
management. Without appropriate data, modern scientific management principles are
impossible. Of course, that’s not to say that BI is the be-all and end-all of management
information; in fact, BI as a concept has gained widespread acceptance only in the past 20
years or so. But when it comes to building and maintaining a competitive market position,
organizations need a crystal ball, and BI as a concept is all about building the intelligence
required to make confident predictions.

Conceptually, we all have a good idea of what BI is, and as you’ve seen, practically it
means something different to every organization. Technically, however, the tools used to
deliver BI are pretty well established and easy to define. Commonly, BI solutions make use
of a data warehouse that acts as a central repository of data. Using approaches such as
Online Analytical Processing (OLAP), data can be effectively analyzed in many different
dimensions. As well as providing a mechanism for ad hoc analysis of data, BI also commonly
provides well-defined performance management data. This may include measures such as
actual sales performance versus sales target or statistical measures such as capacity utilization.
For organizations in the public sector, this data are more likely to relate to social factors
such as socioeconomic distribution or cost per interaction.

Regardless of the type of data required and the nature of organization, the underlying
principles remain the same. BI can be subdivided into two categories: business analytics (BA),
which refers to the analytical use of data to facilitate better long term planning and decision
making; and business performance management (BPM), which refers to the short-term

464 PART IV Data Access Layer

management of an organization using defined metrics and targets. This chapter looks
at the tools available within the SharePoint Server 2010 platform for facilitating both of
these approaches.

Microsoft Business Intelligence Solution
Before we dive into what SharePoint can do to help us implement a BI solution, let’s spend
a bit of time considering where SharePoint fits into the bigger picture. If there’s such a
thing as a BI mantra, it’s this: “One version of the truth.” That is, every BI system within
an organization should provide exactly the same answer when asked the same question.
Addressing this problem is undoubtedly one of the biggest considerations of a BI solutions
architect, and to address this issue, Microsoft provides a single enterprise-ready BI solution.
Where there’s one single, all-encompassing platform, maintaining one version of the truth
is a much more realistic goal.

Business User Experience
Microsoft Office applications are ubiquitous on the desktop PCs and laptops of knowledge
workers. Using applications such as Excel and Outlook to surface and manipulate BI data
makes it easy for users to consume BI data without having to adopt a new way of working
or learn new tools. Furthermore, using applications such as Excel, users can achieve a much
higher level of integration than would be possible if BI data were available only via reports
or other static data media. Custom workbooks can be created that directly access and utilize
data from the BI platform.

Business Productivity Infrastructure
“Business productivity infrastructure” is something of a marketing term that relates to the
infrastructure and applications that an organization uses to facilitate the use of business
information by knowledge workers. Business productivity is all about making the right
information available to the right people at the right time. It’s also about allowing people
to create and collaborate on the creation of new information as effectively as possible.
Clearly, when viewed from this perspective, SharePoint fits in. Centrally managed and
created content can be easily surfaced using portal sites, and self-service BI applications can
be created using tools such as Excel Services. Furthermore, BI can be integrated with other
sources of information, increasing the overall visibility of important business metrics.

Data Infrastructure
The user experience is all about how the user interacts with the data provided, whereas the
productivity infrastructure is about providing a platform that allows centralized storage,
collaboration, and content creation. One important element that we haven’t looked at is
the actual data itself—where it’s stored and how it’s processed. Although SharePoint is a
great tool for storing documents and document-related content, when it comes to
processing and analyzing large volumes of data, a more specialized tool is required.

Offering tried-and-tested OLAP functionality via Analysis Services and a comprehensive
reporting platform via Reporting Services, SQL Server is the obvious choice for hosting and

Chapter 18 Business Intelligence 465

P
a

rt
 I

V

managing both the data warehouse aspect of a BI solution and the analysis and report-
generation aspects.

SharePoint Server 2010 Business Intelligence Platform
Now that you know how SharePoint fits into the bigger picture, let’s look at the features
and tools that are available to us when developing BI solutions.

Excel Services
Excel Services were discussed in Chapter 12, where its uses within the BI domain were
mentioned. One of the things about Excel is that it’s commonly used to hold a lot of vital
management information within an organization. In an ideal world, every useful piece of
data would be found in a data warehouse and would be accessed via OLAP or some other
reporting mechanism. In the real world, that just isn’t the case. Despite the best efforts of
BI professionals the world over, business users simply find Excel to be easy to use and an
essential tool for performing their day-to-day jobs. In the real world, some vital data will
always live in Excel.

Rather than chasing some data warehousing utopia, a more effective approach is to
allow users to continue to use Excel. By taking advantage of the features offered by Excel
Services, data managed and stored in Excel workbooks can play an important part in an
organization’s BI strategy. All the tools available within SharePoint can make use of Excel
data as readily as OLAP data or relational data from SQL Server.

As well as making effective use of data stored within Excel workbooks, you’ve seen how
the Excel application forms a key part of the Microsoft BI solution. The analytical and display
capabilities coupled with a general familiarity with the product represent an unbeatable
combination that should always form a core part of any BI strategy. By allowing workbooks
to be hosted in Excel services and used via a web browser, SharePoint extends the reach of
the powerful features of Excel beyond the desktop.

Business Intelligence Web Parts
SharePoint provides a few basic BI web parts out of the box. As a platform that’s often used
for creating intranet sites and other organizational portals, the web parts allow users to
include important performance metrics within portal pages easily. Along with web parts
that are used to display information, SharePoint also defines a number of content types
specifically for storing BI data. Based on the Common Indication Columns content type,
these additional content types all describe business metrics that can be displayed using the
built-in web parts.

The indicator types available out of the box include the following:

Excel-based status indicator• This indicator is used for retrieving values from an
Excel workbook hosted using Excel services. The indicator can refer either to a cell
address such as Sheet1!A1 or a named range such as MyIndicator.

Fixed Value–based status indicator• The Fixed Value indicator has been designed
to be manually updated. However, it’s particularly useful to us as developers,

466 PART IV Data Access Layer

because its value can be manipulated programmatically as the following code
sample shows:

static bool SetIndicatorValue(SPWeb web, string listName,
 string indicatorName, double newValue)
 {
 SPList list = web.Lists.TryGetList(listName);

 if (list != null)
 {
 SPContentTypeId myct = new
 SPContentTypeId("0x00A7470EADF4194E2E9ED1031B61DA088401");

 bool supportsContentType = (from SPContentType ct in list.ContentTypes
 where ct.Id.IsChildOf(myct)
 select true).First();
 if (supportsContentType)
 {
 //Note: Only use this technique on very small lists. For larger lists a
 //CAML query will offer much better performance

 SPListItemCollection listItems = list.Items;

 SPListItem item = (from SPListItem indicator in list.Items
 where indicator.Title == indicatorName
 select indicator).First();

 if (item != null)
 {
 if (item.Fields.ContainsField("Value"))
 {
 item["Value"] = newValue;
 item.Update();
 return true;
 }
 }
 }
 }
 return false;
 }

SharePoint list–based status indicator• While a fixed value indicator makes use of
a single value stored within SharePoint, the SharePoint list–based indicator makes
use of all items in a SharePoint list. The value of the indicator can be either the
number of the items in the list or the percentage of the items where a particular
condition is met or even a calculation based on the values of particular fields in the
list. This indicator is especially useful for showing metrics for data that is created
and managed within SharePoint.

Chapter 18 Business Intelligence 467

P
a

rt
 I

V

SQL Server Analysis Service–based status indicator• As you’ve seen, most BI data
is processed using OLAP. The SQL Server Analysis Services indicator allows you to
display an indicator easily from an OLAP cube.

NOTE At the time of writing, on SharePoint 2010 Beta 2, it’s not possible to create a custom list with the
facilities to add new indicators. Although the appropriate content types can be added to the list,
they’re not displayed in the New Item menu and therefore can’t be created. To resolve this problem,
enable the SharePoint Server Enterprise Site Features option within Site Settings, and then create an
indicator list using the Status List template, as shown next:

Several built-in web parts are available out of the box and are discussed in the following
sections.

Indicator Details Web Part
The Indicator Details web part can be used to display details of a single indicator value.
As you’ve seen, all indicator values are derived from the Common Indicator Columns
content type, and each of these types can be appropriately rendered using the Indicator
Details web part.

468 PART IV Data Access Layer

The following screenshots show the configuration settings and rendered output of an
indicator derived from an Excel workbook:

Status List Web Part
The Status List web part works in a similar fashion to the Indicator Details web part, except
the Status List web part shows all indicators from a specific SharePoint list. Indicators derive
from a common content type, and by creating a list based on this content type, we can store
a number of different indicators in a single location. The Status List web part renders each
indicator appropriately based on its underlying source.

The Status List web part is useful for displaying a range of important metrics on an
intranet page or other portal site, as shown here:

Chapter 18 Business Intelligence 469

P
a

rt
 I

V

Chart Web Part
The Chart web part is a useful new addition in SharePoint 2010. Data can be retrieved from
Lists, Business Connectivity Services, or Excel Services. Alternatively, the chart control can
be connected to another web part, which can act as a data source for the control.

PerformancePoint Services
The web parts that are available out of the box are great for adding basic BI functionality to
portal sites or other SharePoint applications. However, when it comes to building a dedicated
BPM portal, the real jewel in the SharePoint 2010 crown is PerformancePoint Services, with
features that allow developers and BI professionals to create highly interactive BPM portals.

Ultimately, PerformancePoint solutions are delivered as a series of SharePoint web part
pages and can therefore be completely integrated into a larger portal solution in the same
way as any other SharePoint content. Although the pages consist of a collection of
PerformancePoint-specific web parts, a rich client editing experience is provided via the
Dashboard Designer, which is accessed as a ClickOnce-deployed application from any
PerformancePoint-enabled site.

Using PerformancePoint Within a Site
To use PerformancePoint within a site, you must create a few specific lists and libraries. In
much the same way as the Status Indicator web parts, PerformancePoint content is based
on a few custom content types. Data based on these content types is then stored in specific
lists and libraries, which are referenced in turn by the custom web parts. To add
PerformancePoint functionality to an existing site, take the following steps:

 1. Enable the PerformancePoint Services Site Collection Features at the Site Collection
level. From Site Settings, choose Go To Top Level Site Settings | Site Collection
Features.

470 PART IV Data Access Layer

 2. Enable the PerformancePoint Services Site Features feature in Site Settings |
Manage Site Features.

 3. Add a new list based on the PerformancePoint Content List type, as shown:

 4. Add a new data connections library based on the DataConnections Library for
PerformancePoint type.

NOTE The PerformancePoint data connection library uses a different template to the standard data
connection library that is generally used by Office applications. Be sure to select the correct type
when creating the library. The difference between the two is that the standard data connection library
can contain only Office Data Connection files as used by Excel or Universal Data Connection files as
used by InfoPath, whereas the PerformancePoint library can also include the PerformancePoint Data
Source content type. Bearing this in mind, you can convert an existing data connection library to
support PerformancePoint simply by adding the PerformancePoint Data Source content type.

 5. Add a new library based on the Dashboards library type.

Dashboard Designer
To start using the PerformancePoint Dashboard Designer, navigate to the PerformancePoint
content list and then add a new item. The Dashboard Designer will start automatically, as
shown here:

Chapter 18 Business Intelligence 471

P
a

rt
 I

V

The Workspace Browser performs a similar function to the Solution Explorer in Visual
Studio: it allows you to see all the items that are available for use within the project. One
important difference here, however, is that two views are available for each of the items
listed in the Workspace Browser: the SharePoint view, which lists all the items in the
associated SharePoint list, and the Workspace view, which lists all the items in use in the
current workspace. An item from SharePoint can be added to the current workspace by
double-clicking it.

One thing to bear in mind about the Dashboard Designer is that workspace files
can be saved to the file system. You can open these files using the Open command in the
Dashboard Designer or by double-clicking the filename to view the workspace, which will
be automatically bound to the appropriate SharePoint lists. However, it’s also possible to
use the file to export a workspace to another site. Rather than opening the file directly,
you can click the Import Items button in the Home menu of the Dashboard Designer
application to allow artifacts from the workspace file to be imported and automatically
added to a new SharePoint site.

PerformancePoint Data Connections
In much the same way as Office Data Connections (ODCs) are created and managed via
the Excel client application and Universal Data Connection (UDCX) connections are
managed via InfoPath, PerformancePoint connections are created and managed using
the Dashboard Designer application.

472 PART IV Data Access Layer

A number of different types of data sources can be used, including Analysis Services,
Excel Services, SharePoint lists, and SQL Server tables. To provide the highest degree of
interactivity, an Analysis Services–based data source is the preferred option. However, as
you’ll see later, PowerPivot offers a new way for knowledge workers to create in-memory
Analysis Services cubes easily using an add-in for Excel client. When PowerPivot integration
is configured, SharePoint makes use of Analysis Services in SQL Server 2008 R2 to host
these user-generated cubes; as a result, they are usable by PerformancePoint in the same
way as cubes generated using the more traditional data warehousing method.

To demonstrate how to use the Dashboard Designer, consider the AdventureWorks
sample database available from www.codeplex.com/MSFTDBProdSamples. In addition to
the sample databases, we’ll also need to deploy the OLAP sample project that can be found
at C:\Program Files\Microsoft SQL Server\100\Tools\Samples\AdventureWorks 2008 Analysis
Services Project\standard after the AdventureWorks sample project has been installed. For
full details of how to set up the sample databases, please see the instructions that are
available from the CodePlex site.

To create a connection to an OLAP data source, take the following steps:

 1. In Dashboard Designer, select the Data Connections folder that we created earlier
when we enabled PerformancePoint functionality for our site.

 2. Select the Create tab on the ribbon, and then click the Data Sources button in the
Dashboard Items section.

 3. From the Select a Data Source Template dialog, click Analysis Services, as shown,
and then click OK:

www.codeplex.com/MSFTDBProdSamples

Chapter 18 Business Intelligence 473

P
a

rt
 I

V

 4. In the Properties tab, set the name of the new connection to AdventureWorksOLAP.
Then in the Editor tab’s Connection Settings section, enter the name of the Analysis
Services instance that hosts the AdventureWorks OLAP sample cube. Select the
Adventure Works DW 2008 SE database and the Adventure Works Cube.

 The three options in the Data Source Settings section warrant some explanation:

Unattended Service Account• This generic account is used by the
PerformancePoint Service application to access data sources where no
specific credentials are provided. In practice, the unattended service account
works in a similar fashion to the unattended account discussed in Chapter 12
on Excel Services. The Unattended Service Account is configured via Central
Administration and can be found in the PerformancePoint Service Application
Settings section of the PerformancePoint Service Application management
page. This can be accessed by choosing Central Administration | Manage Service
Applications | PerformancePoint Service Application | PerformancePoint Service
Application Settings | Secure Store And Unattended Service Account. To use the
Unattended Service Account, the Secure Store Service must also be properly
configured. The steps required to do this are covered in Chapter 12.

Unattended Service Account and Add Authenticated User Name In Connection •

String For some data sources, the username is useful for providing a personalized
view of the data. By selecting this option, the data source is still accessed using
the unattended service account credentials, but the username of the requesting
user is also passed to the data source via the CustomData connection string
property. CustomData is an Analysis Services–specific connection string property
and can contain any string value. The value of the property can then be picked
up within the OLAP project by using the CustomData() Multidimensional
Expressions (MDX) language function.

Per-user Identity• By selecting this option, the identity of the requesting user is
used to access the data source. This option offers a more granular approach to
security but does so at the expense of having to manage requesting user access
directly on the data source.

474 PART IV Data Access Layer

 5. Now that we have some understanding of the options available, we’ll use the default
value of Unattended Service Account. As mentioned earlier, in order for this to
work the account must be appropriately configured in Central Administration.

 6. Click Test Data Source to confirm connectivity. Once connectivity has been
confirmed, click the Save icon to persist the changes.

Although we’ve used only one data connection for this demonstration, you can use any
number of data connections within a PerformancePoint workspace. For example, if our
application captured data using a survey in SharePoint 2010, we could easily include the
results of the survey in our dashboard by creating a connection to the appropriate
SharePoint list. As you saw when creating our Analysis Services connection, available
options include Excel Services, SharePoint lists, and SQL Server tables.

PerformancePoint Content
With a connection set up and ready to go, we can move on and take a look at creating our
first dashboard using PerformancePoint. Before jumping into this, however, you’ll find it
worthwhile to develop an understanding of how everything hangs together behind the
scenes. Select the PerformancePoint Content folder that we created earlier, and then click
the Create tab in the ribbon. This time, you’ll see a much wider range of options, as shown
next:

Dashboards are essentially a collection of web pages. As mentioned earlier,
PerformancePoint dashboards are made up of web parts, which are discussed in
the following sections.

PerformancePoint Filter When the Filter item is added to a dashboard from the
Dashboard Items section of the ribbon, behind the scenes the PerformancePoint Filter
web part is added to the underlying page. As you’ll see, the Filter control can be used to
filter other elements on the page.

PerformancePoint Report The PerformancePoint Report web part does most of the
heavy lifting within a dashboard. Whenever a report is added to a dashboard, behind the
scenes a PerformancePoint Report web part is added to the underlying page. This means
that each of the options available from the Reports section of the ribbon are implemented
using a PerformancePoint Report web part.

PerformancePoint Scorecard Scorecards are implemented using a specific web part.
Scorecards work in a similar fashion to the Status List web part discussed earlier. The major
difference is that PerformancePoint scorecards are managed by the PerformancePoint
Service Application, as opposed to being rendered from a SharePoint list.

Chapter 18 Business Intelligence 475

P
a

rt
 I

V

PerformancePoint Stack Selector The PerformancePoint stack selector web part is
used to provide a navigation mechanism between the dashboard pages. When creating a
dashboard, the Stack Selector is added automatically.

Create a Dashboard
Now that you know how PerformancePoint weaves its magic, let’s create a simple
dashboard:

 1. From the Dashboard Items section, click Dashboard to add a new dashboard to the
workspace.

 2. From the Select a Dashboard Page Template dialog, select the 2 Columns template.

 3. Type the name of the dashboard as MySampleDashboard.

 4. In the Series box, click the Product Categories drop-down. When the Select
Members dialog appears, uncheck the Default Member (All products) checkbox,
and then expand the All Products branch and select Accessories, Bikes, Clothing,
and Components.

 5. You can see in the editor that three sections are shown. The top section allows you
to add additional pages to the dashboard, and the bottom section represents the
dashboard content and contains two columns, as shown next, because we selected
the 2 Columns template. We can add content to the Dashboard Content section by
dropping the appropriate item from the Details section on the right side of the
page. Of course, before we do this, we’ll need to create some content to add!

476 PART IV Data Access Layer

 6. From the Reports section of the ribbon, click Analytic Chart. In the Select a Data
Source step of the wizard, select the AdventureWorksOLAP data source and then
click Finish.

 7. Type the name of the new report as MyChartReport. You’ll see the Analytic Chart
designer interface. To create a chart, you can drag measures, dimensions, or named
sets from the Details section on the right side of the page onto the design interface.

 8. Drag the Product dimension into the Series section and the Date dimension into
the Bottom Axis section.

 9. Rather than displaying our data using the default bar chart, change the layout to
Pie Chart by right-clicking anywhere on the chart and selecting Report Type | Pie
Chart.

 10. Save the finished report, and then switch back to MySampleDashboard.

 11. Drag the finished report onto the dashboard. Under the Reports heading in the
Details pane, drag MyChartReport onto the left column of the dashboard.

The next thing we need to add is some content for the right column. This time, we’ll
use an Analytic Grid report to allow users to examine the details that make up the chart.

 1. As before, click the Analytic Grid icon in the Reports section of the ribbon. Select
the AdventureWorksOLAP data source, and then name the report MyGridReport.

 2. This time we want to show a bit more detail. Drag the Product dimension into the
Rows section, the Geography dimension into the Columns section, and the Date
dimension into the Background section. Save the completed report, and then add
it to the right column of the dashboard.

 3. Now that our sample dashboard is populated, we can publish it to SharePoint to
see the finished result. Right-click MySampleDashboard, and then select Deploy
to SharePoint.

Once the dashboard has been deployed, it will automatically be opened in a new
browser window and will look similar to this:

Chapter 18 Business Intelligence 477

P
a

rt
 I

V

Time Intelligence
Before we look at some of the advanced functionality of the PerformancePoint Report
web part, let’s take a look at another important aspect of most BI solutions: time intelligence.
Practically every dataset has some aspect of time involved, and more often than not, data is
analyzed over specific time periods. To show how this works in PerformancePoint, we’ll add
a filter to our report that will allow us to select a specific time period and will automatically
update our reports accordingly.

 1. Switch back to Dashboard Designer. Time intelligence must first be configured on
the data connection before it can be used. Double-click the AdventureWorksOLAP
connection, and then switch to the Time pane.

 2. Our sample cube has various dimensions that we can use for time intelligence.
For the purposes of this demonstration, select Date.Date.Calendar from the Time
Dimension drop-down.

 3. With the dimension defined, we can set a reference member. All we’re doing here
is selecting a specific value from our chosen time dimension and then specifying to
what actual value it corresponds. Click the Browse button, and then select a single
day from the Date.Date.Calendar hierarchy.

 4. In the Hierarchy Level drop-down, select Day and then enter the corresponding
date in the Reference Date text box, as shown next:

 PerformancePoint has its own time aggregation levels that need to be mapped to
the corresponding levels in our dimension hierarchy. In our case, this is pretty
much a one-to-one mapping.

 5. In the Time Member Associations section, select the appropriate Time Aggregation
values, as shown:

 6. Save the changes to the AdventureWorksOLAP data connection.

478 PART IV Data Access Layer

We can now make use of our time intelligence functionality to create a filter for our
sample dashboard.

 1. Switch to MySampleDashboard, and then click Filter from the Dashboard Items
section of the Create ribbon.

 2. In the Select a Filter Template dialog, select Time Intelligence, as shown:

 3. Click Add Data Source, and then select AdventureWorksOLAP.

 4. Add formulae as shown in the following illustration. This step warrants a bit of
further explanation. Time, of course, is always changing. By tomorrow, today will
have become yesterday. To accommodate this constant change, values shown in the
time selector are calculated using simple formulas that take the current date into
account. You’ll see this in action by creating a selector that shows how to select
from one of the previous four quarters.

Chapter 18 Business Intelligence 479

P
a

rt
 I

VNOTE We’re subtracting 15 from the current quarter because the AdventureWorks data set contains data
from 2001 through to 2006, so subtracting 15 quarters will ensure that we’ve got something to see
in our report. Depending on the version of the sample data that you’re using, you may need to adjust
the formulae accordingly.

 5. Click Next, and then select List as the Display Method. Click Finish to create the
new filter. Type the name MyTimeFilter.

 6. Switch back to the MySampleDashboard item and drag the new filter from the
Details pane onto the left column.

 7. We can hook the filter up to our reports by dragging the AdventureWorksOLAP
field onto the Drop field to create a connections section of the appropriate report.
In the Connection dialog, accept the default values of Connect To: Date Calendar
and Source Value: AdventureWorksOLAP.

 8. Do this for both reports, and then deploy the updated dashboard to SharePoint.

480 PART IV Data Access Layer

Our dashboard now contains a drop-down selector that we can use to select the date
range for our reports. Notice that when we select Year, a chart is drawn for each quarter
in the year rather than a single chart covering the entire period. This happens because we
defined year as a series of quarters rather than a single time period, and our chart is bound
to use a time period as one of its axis.

Decomposition Tree
Although we specified which dimensions and measures were to be used on our reports
together with the layout and other options, all of this stuff can be changed dynamically by
the user so that he or she can further analyze the data being represented. In reality, when
we create a dashboard, we’re simply defining the starting point for further analysis by the
user. When a user right-clicks any PerformancePoint Report web part, a context menu
appears and presents an array of options, such as drill up/drill down and measure selection.
Covering the entire range of options available is outside the scope of this chapter. However,
of these options, one of the new additions in SharePoint 2010 is the Decomposition Tree.

The Decomposition Tree is a Silverlight control that allows users to drill down visually
into data using any of the dimensions and measures that are available within the cube.
Clicking each data item presents a list of dimensions that can be used to expand the dataset
as well as relevant properties and rollup information on the current selection. The best way
to understand the Decomposition Tree is to mess around with it. To show the control,
right-click any data element—for example, right-click a pie chart slice or a number on the
grid report, and then select Decomposition Tree from the context menu. The control will
be shown as follows:

PowerPivot
We’ve looked at PerformancePoint and how it can be used to build powerful business
process management solutions using the SharePoint platform. Such solutions are excellent
for providing day-to-day management information or other business information, for which
the requirements can be easily defined and implemented. However, one of the common

New in

2010

Chapter 18 Business Intelligence 481

P
a

rt
 I

V

stumbling blocks in large-scale BI projects is that too often the project becomes a victim
of its own success. A project may start off with a range of commonly used line-of-business
reports, but over time, more and more requests for additional reports or changes to existing
reports can overwhelm available development resources. When this happens, users who are
unable or unwilling to wait until a suitable resource is available often resort to cobbling
together their own solutions using Excel, Access, or some other tool. Each homegrown
solution is a step farther away from the BI mantra of one version of the truth, and over
time, a lot of the good work done on the project is lost.

Thankfully, it doesn’t have to be this way. The solution to this problem is to empower
users to create their own ad hoc reports using a series of common data sources. Historically,
solutions to this problem have focused on the front end, presentation layer of report
generation. Tools such as Reporting Services include a report builder with which users can
create reports from published data sources. Although this approach does go a long way
toward reducing the burden on development resources, the presentation layer is probably
the least time-consuming aspect of report generation. Where the hard work comes in is at
the data warehousing and OLAP layers, and tools such as Report Builder don’t provide any
assistance here.

With SQL Server 2008 R2, Microsoft includes a new product known as PowerPivot.
PivotTables are a well-known and widely used feature of Excel, especially when it comes to
analyzing business data. However, PivotTables have their limitations, and one of the most
significant with respect to this discussion is in the selection of data sources. PivotTables can
either make use of data within a workbook or they can be connected to a predefined data
source. You’ve seen that a fair bit of work is involved in predefining data sources, especially
when attempting to meet specific reporting requirements. PowerPivot addresses these
issues by allowing users to create their own data sources from a mash-up of existing sources.
Additionally, PowerPivot lets users work with much larger datasets that would normally be
possible using PivotTables.

In effect, PowerPivot is a user-driven OLAP tool. It allows users to create in-memory
OLAP cubes and uses those cubes within Excel in the same way as external data sources.
Now, the implications of that are pretty significant, but when coupled with the fact that
the resulting Excel workbooks can then be hosted using Excel services and accessed as
OLAP data sources in their own right, you can see that PowerPivot truly opens the door
to collaborative BI solutions.

PowerPivot Excel Add-In
Users can create PowerPivot data sources using an add-in for Excel 2010 that can be
downloaded from www.microsoft.com. Let’s work through an example to see how the
add-in works. As earlier, we’ll make use of the AdventureWorks sample databases.

 1. PowerPivot data is created using Excel 2010, as mentioned. Open the Excel
application and then, from the PowerPivot tab, select PowerPivot Window from
the ribbon, as shown here:

www.microsoft.com

482 PART IV Data Access Layer

 PowerPivot can import data from a variety of sources, including traditional sources
such as SQL Server and other database systems, as well as other sources such as
Reporting Services reports, ATOM feeds, and other PowerPivot workbooks. For the
purposes of this demonstration, we’ll use the AdventureWorks database running on
SQL Server.

 2. From the Home tab, select From Database in the Get External Data section of the
ribbon, and then select From SQL Server.

 3. Configure the connection to connect to the AdventureWorks sample database, and
then select the Product and ProductInventory tables, as shown:

 4. Data from the selected tables will be imported into PowerPivot and will be
displayed as data grids within individual tabs. As part of the import process,
PowerPivot automatically creates relationships between the two tables. We can
check that these relationships are correct by clicking the Table tab and then
clicking the Manage Relationships button from the ribbon.

TIP Creating relationships within PowerPivot is an important feature. You can import data from a variety of
sources and create relationships between tables from different sources.

Chapter 18 Business Intelligence 483

P
a

rt
 I

V

Data Analysis Expressions (DAX)
In the Manage Relationships dialog, you can see that the ProductInventory table is related
to the Product table using ProductId. This relationship was picked up from the underlying
database. We’ll make use of this relationship to illustrate the use of the new DAX language.
DAX uses a syntax that’s similar to Excel formulae. The main difference is that DAX
functions generally operate on multiple rows of data. In our example, our function
summarizes quantity values from a related table.

 1. In the Product table, select the Column tab, and then click the Add Column button.

 2. In the formula bar, enter the following DAX expression:

=SUMX(RELATEDTABLE('ProductInventory'),
 'ProductInventory'[Quantity])*'Product'[StandardCost]

 3. Right-click the CalculatedColumn1 header, and then select Rename Column.
Change the column name to InventoryCost.

 4. To make use of this data in Excel, switch back to the Home tab and then select
PivotTable | Single PivotTable from the ribbon.

We can now create a PivotTable in the usual manner by
adding columns to the appropriate sections. Notice that our
calculated InventoryCost column appears in the list and can
be used in the same way as other columns. We can drag the
InventoryCost column into the Values section of the Gemini
Task Panel to create a new summary value named Sum of
InventoryCost, as shown here:

PowerPivot for SharePoint
In addition to the Excel add-in that allows users to create and
use PowerPivot enabled workbooks, another feature of SQL
Server 2008 R2 provides SharePoint integration for PowerPivot.
This allows PowerPivot-enabled workbooks to be hosted by
Excel services in the same way as regular workbooks. Instead
of the in-memory version of Analysis Services that’s used when
accessing a PowerPivot-enabled workbook via the Excel client,
when SharePoint integration is configured, PowerPivot cubes
are hosted on-demand by Analysis Services.

NOTE For more information on configuring PowerPivot for SharePoint,
see http://msdn.microsoft.com/en-us/library/ee637439.aspx
and http://msdn.microsoft.com/en-us/library/
ee637271(v=SQL.105).aspx.

http://msdn.microsoft.com/en-us/library/ee637439.aspx
http://msdn.microsoft.com/en-us/library/ee637271(v=SQL.105).aspx
http://msdn.microsoft.com/en-us/library/ee637271(v=SQL.105).aspx

484 PART IV Data Access Layer

Making use of the simple PowerPivot workbook that we created earlier, we can publish
the workbook to SharePoint. Before we do this, we need to create a PowerPivot Gallery
document library to contain our workbook.

 1. You publish PowerPivot workbooks in exactly the same way you publish other Excel
content to Excel Services. Select the File tab to enter the backstage area, and then
select Share.

 2. Click Publish To Excel Services, and then navigate to the PowerPivot gallery that we
created earlier. If everything is set up properly, the workbook will be uploaded to
the library. Navigating to the PowerPivot gallery will show details of the workbook
together with previews of each page:

Now that we’ve published our PowerPivot data source, we can make use of it as a data
source anywhere that can utilize Analysis Services data. Let’s see this in action by creating a
PerformancePoint dashboard based on our PowerPivot workbook.

 1. In Dashboard Designer, create a new data source by selecting Data Source from the
Create tab.

 2. In the Select a Data Source Template dialog, select Analysis Services.

 3. In the Connection Settings section, set the Server to the URL for our sample
PowerPivot workbook, and then choose the default Database and Cube values from
the respective drop-downs.

Chapter 18 Business Intelligence 485

P
a

rt
 I

V

NOTE I’ve used localhost as the server name for illustrative purposes. Enter the actual name of your
server to prevent security errors.

 4. Using this new data connection, we can now create dashboards and reports in the
same way we did earlier when addressing the AdventureWorksOLAP data source.

The real power of PowerPivot on SharePoint is that a workbook published to Excel
Services can be treated in the same way as a regular OLAP cube. Instead of development
resources being tied up designing and developing every cube using Business Intelligence
Studio, you can now build simple cubes using Excel and PowerPivot. Since the data is
easily accessible, it can be integrated into a wider BI solution with relatively little effort.
As you’ve seen, for example, PowerPivot data can be used to generate the same dynamic
PerformancePoint reports as OLAP data hosted using Analysis Services.

Reporting Services
Reporting Services are generally used in conjunction with SQL Server and Analysis Services
to generate all manner of reports. A standard installation of Reporting Services will provide
a web-based portal where users can browse through a collection of published reports. As an
alternative to a stand-alone portal, Reporting Services can also be installed in SharePoint
integration mode. As the name suggests, this mode provides a much higher degree of
integration with SharePoint. All report data, rather than being stored in a dedicated
Reporting Services database and presented via a stand-alone portal, is now stored directly
within SharePoint lists and libraries.

486 PART IV Data Access Layer

Creating a Reporting Services Report
Let’s take a look at creating a report using Reporting Services and publishing it to a
SharePoint document library. Before Reporting Services can be used with SharePoint,
you need to install and configure the Reporting Services add-in for SQL Server 2008 R2.
The add-in can be downloaded from www.microsoft.com/downloads/details.
aspx?FamilyID=16bb10f9-3acc-4551-bacc-bdd266da1d45&displaylang=en. After
you’ve installed the add-in, do the following:

 1. Start the SQL Server Business Intelligence Studio application, and then create a
new project using the Report Server Project Wizard template, as shown next:

 2. We’ll make use of the AdventureWorks sample database for this report. In the
Report Wizard dialog, click Next to move to the Select the Data Source step. Create
a new data source and name it AdventureWorks. Set the connection string to point
to the AdventureWorks sample database.

 3. Click the Make This A Shared Data Source checkbox. By making the data source
shared, it will be published as a separate data source item in SharePoint; this will
allow it to be reused by other reports. The alternative to a shared data source is an
embedded data source, where the details are embedded within the report.

www.microsoft.com/downloads/details

Chapter 18 Business Intelligence 487

P
a

rt
 I

V

 4. Either click the Query Builder button to create the following query or manually
enter it into the Query string text box:

SELECT C.FirstName,
 C.LastName,
 C.Phone,
 E.Title
FROM HumanResources.Employee as E
INNER JOIN Person.Contact as C
ON E.ContactID = C.ContactID

 5. Create a Tabular report grouped by Title with FirstName, LastName, and Phone in
the Detail section, as shown here:

 6. Click Finish and then name the report Telephone Directory.

 7. Before we can publish the new report to SharePoint, we need to let the project
know where to store the various components, such as the data connection and the
report definition. To set these options, choose Project | MySampleReport Properties.

488 PART IV Data Access Layer

 8. In the Deployment section, specify appropriate values for each target folder and
the TargetServerURL, as shown next. Notice that the folders must be fully qualified
URLs and the TargetServerURL must be the URL to the SharePoint site where the
reports will be deployed.

 9. To deploy the report to SharePoint, choose Build | Deploy MySampleReport. If
everything is properly configured, the report and its associated data connection
will be uploaded to the configured SharePoint document library.

 10. To view the report, simply click the item in the document library.

Creating a report and publishing it to SharePoint is no more difficult than creating a
Word document or any other content. Since the report is stored within SharePoint, it is
automatically subject to the same security and information management policies as other
content.

Report Builder
After a report has been published to SharePoint, it can be modified by users who have the
appropriate permissions by using the Report Builder tool. Like the PerformancePoint
Dashboard Designer, the Report Builder is a click-once application that can be accessed
directly from within SharePoint. To open a report using the Report Builder, select Edit in
Report Builder from the context menu, as shown here:

Chapter 18 Business Intelligence 489

P
a

rt
 I

V

Reporting Services Web Part
When a user clicks a report in a SharePoint library, the report is automatically rendered
on the page. It should come as no surprise to learn that this is done using a Reporting
Services–specific web part. However, having such a web part available presents the
opportunity to integrate Reporting Services content with other content on pages within
a SharePoint application.

For us developers, being able to amalgamate Reporting Services content with
application-generated content greatly increases the flexibility of our applications. When
it comes to displaying or printing application data, offloading the task to Reporting Services
provides a whole host of functionality that would be very time-consuming to build from
scratch.

Summary
The groundbreaking BI capabilities enabled by SharePoint 2010 offer many exciting
possibilities for developers. You’ve seen how PerformancePoint offers powerful BPM
capabilities while PowerPivot delivers a whole new level of self-service business analytics.
There’s no doubt that this is all great stuff if you’re building a BI application. Even if your
application doesn’t require any BI functionality, by leveraging the capabilities available for
building BI solutions, such as the Reporting Services web part, the Chart web part, or the
status indicators, you can address a lot of user interface requirements without having to
resort to custom coding.

This page intentionally left blank

Confi guration

PART

V
CHAPTER 19
Packaging and Deployment
Model

CHAPTER 20
PowerShell

This page intentionally left blank

19
CHAPTER

493

Packaging and
Deployment Model

In the various examples in this book, we’ve made extensive use of Visual Studio and
SharePoint Designer to create and deploy custom code to SharePoint. By now you should
have a good idea of how projects are structured in Visual Studio and how this structure
relates to the entities that are created in SharePoint.

The projects we’ve worked on so far have been relatively small, and we’ve deployed to
a single development server. Although we’ve been using the SharePoint packaging and
deployment model, we haven’t explored it’s full potential. In the real world, a knowledge of
how packaging and deployment works in a SharePoint farm is an essential skill. This chapter
will help you use the knowledge you’ve gained so far to understand how the SharePoint
packaging and deployment model fits into the bigger picture.

Working with Packages
What may not be apparent in the projects that we’ve created so far is that when we’re
deploying a solution to SharePoint, the artifacts in our Visual Studio project are collated
into a package file that is then copied to the server. The SharePoint deployment process
then uses the contents of the package to install our customization. We can see this process
in action by monitoring the output window in Visual Studio.

So far we’ve been working on a single server development machine, but what happens
if a farm includes several servers? How can we deploy our customization to all servers? The
answer is, of course, to use a package that can be stored centrally and automatically rolled
out to all servers in the farm as part of the installation process. As new servers are added to
the farm, centrally stored packages are automatically deployed as required. Furthermore,
farm administrators have the ability to deploy and retract packages from the Central
Administration console.

494 PART V Confi guration

Package Structure
SharePoint packages are created as cabinet (CAB) files with a .wsp extension. We can,
however, rename a .wsp file, such as myproject.wsp, to myproject.cab and view the contents
in Windows Explorer.

Each package file contains many different elements, mostly consisting of XML files
and resources such as dynamic link libraries (DLLs), script files, or images. One thing that
package files have in common, however, is a manifest.xml file. This file is basically the setup
guide for the package and contains a list of the deployable items within the package.

Each solution consists of one or more deployable item. A number of different types of
deployable items exist, such as an assembly, a resource file, or a site definition file. However,
for the most part, deployable items are defined using feature manifests.

Package Designer
Let’s see how these ideas jibe with our understanding of the Visual Studio project structure.

 1. Create a new blank site named Chapter19.

 2. Using Visual Studio, create a new Empty SharePoint Project named Chapter19,
as shown:

 3. In the SharePoint Project Wizard, set the site to use for debugging as the site
created in step 1, and then select the Deploy As Farm Solution option.

 4. Choose Project Add New Item. Then in the Add New Item dialog, select Empty
Element, as shown. Name the element FirstElement.

 Chapter 19 Packaging and Deployment Model 495

P
a

rt
 V

Let’s take a look at what’s happened in Visual Studio. We have a Features folder and a
Package folder. If we double-click Package.package within the Package folder, we’ll see the
package designer shown here:

496 PART V Confi guration

The package designer gives us a visual tool we can use to modify the manifest.xml for
a package file. Click the Manifest button at the bottom of the page to see the underlying
manifest.xml file:

<Solution xmlns="http://schemas.microsoft.com/sharepoint/"
 SolutionId="--snipped--" SharePointProductVersion="14.0">
 <Assemblies>
 <Assembly Location="Chapter19.dll"
 DeploymentTarget="GlobalAssemblyCache" />
 </Assemblies>
 <FeatureManifests>
 <FeatureManifest Location="Chapter19_Feature1\Feature.xml" />
 </FeatureManifests>
</Solution>

In this manifest are two deployable items: an assembly that will be the build output of
our Visual Studio project and a FeatureManifest that points to a Feature.xml file.

Deploying Assemblies
By default, the build output assembly will always be added to the solution file. This means
that any code that we add within our project will be compiled and the resultant DLL will be
deployed to SharePoint in the solution package. In some situations, however, we may need
to add another assembly. By clicking the Advanced button in the Solution Designer, we can
either add an assembly or add the compiled output of another project within the solution.
Along with adding additional assemblies, we can also add any resource assemblies that
should be included.

Adding Safe Controls
When adding assemblies to a solution, we can also add a safe control entry. Safe control
entries were mentioned in preceding chapters, but I’ll clarify exactly what they are and why
you might need them here.

SharePoint makes use of a custom page parser to assemble the user interface, and this
parser is known as the Safe-Mode Parser. Its primary function is to prevent users from executing
code on the server that hasn’t been specifically approved by an administrator. The mechanism
by which an administrator approves code for execution is the SafeControl entry, which is
ultimately applied as a web.config entry on each front-end server. If our assembly contains
user controls or web parts or any other component that can be declaratively added to a
page, a SafeControl entry is required. If a user attempts to add a component that does not
have a corresponding SafeControl entry, an error will be thrown detailing the absence of
the SafeControl entry as the problem.

Features
In a solution package, the FeatureManifest element is used to specify the reference to the
manifest file for a particular feature. To a certain extent, features work in a similar way to
solutions in that they can contain a number of individual components and make use of a
manifest file to specify what should be done with these components.

 Chapter 19 Packaging and Deployment Model 497

P
a

rt
 V

Feature Designer
Using the Chapter19 project that we created earlier, double-click the Feature1 node in the
Features folder to display the Feature Designer:

As you know, features are individual items of functionality that can be activated or
deactivated within a SharePoint farm. You can see in the Feature Designer that features
comprise one or more elements, where an element may be a web part, a list definition, a
workflow, or a number of different components. Using the Feature Designer, we can select
which elements should be included in a feature and therefore specify which functionality
will be enabled when the feature is activated.

Activation Dependencies
For the most part, we don’t need to think about feature elements, because Visual Studio
automatically creates features for us and adds our project items to them. However, in the
real world, this default behavior may not be appropriate. For example, rather than having
many features, each with a different project item in it, we may want to consolidate related
items into a single feature. This makes it easier for users to activate our customization since
they need to activate only one feature rather than many separate items. It also makes it
easier for us to ensure that all the parts of our solution are activated.

498 PART V Confi guration

We can consolidate related items in a few ways: We can use the Feature Designer to
specify which elements should be included in a feature, or we can define feature dependencies.
Where a dependency is defined, a feature cannot be activated unless its dependencies have
also been activated. This may seem like a poor solution, because it means that users still
have to activate a load of individual features, but we can take this a step further. Under
some circumstances, dependency features will be automatically activated when a feature
that depends upon them is activated. Furthermore, we can hide features so that they don’t
appear in the feature activation user interface. Effectively, this brings us back to the idea of
a single activation click for our customization, while at the same time allows us to keep
individual features relatively simple.

Feature Scope
The activation dependency approach has a few limitations, but before we look at those, we
need to consider feature scope. Again, this is something that we’ve been able to ignore
because Visual Studio handles it for us automatically; in the real world, an understanding
of scope is essential when building complex solutions.

In the Feature Designer, under the Description text box is a drop-down that we can use
to select the scope of a feature: Farm, WebApplication, Site, and Web. As you’ve probably
guessed, these options determine the level at which the components are activated. Components
within a feature scoped as Web will be activated for a single site only, whereas components
within a feature scoped as Farm will be available to the entire farm. However, it’s not quite
as straightforward as that. Not all types of component can be installed in all scopes. For
example, if we’re creating a content type, we can deploy it only using a feature scoped at
the Site level; if we’re adding an event receiver, it can be scoped only at the Web level. You
can find a complete list of what goes where at http://msdn.microsoft.com/en-us/library/
ms454835.aspx.

Feature Activation Rules
To return to our discussion of the limitations of feature dependencies, the first limitation
concerns scope. Features cannot be dependent on features of a more restrictive scope—
that is, a feature scoped at the site collection (Site) level cannot depend on a feature
scoped at the site (Web) level. This makes sense when you think about it, because a site
collection can contain multiple sites, each with its own set of activated features—so there’s
no way to satisfy such a dependency properly. The opposite is not true, however. Features
scoped at the site level can depend on features at the site collection level. There is one
caveat to this rule: A feature can’t depend on another feature at a higher scope if the
higher level feature is not visible. So a site feature can’t be dependent on a site collection
feature that’s hidden. There is a good reason for this: Although we can automatically
activate dependent features, we can do so only within the same level. So we would be
unable to activate our site feature because there would be no way to activate the site
collection feature upon which it depended if the site collection feature were hidden.

The second limitation concerns dependency chains. Generally speaking, activations can
be only one level deep. For example, if feature A depends on feature B, then feature B cannot
have any dependencies. This is true only for visible dependencies, however. If feature B is

http://msdn.microsoft.com/en-us/library/ms454835.aspx
http://msdn.microsoft.com/en-us/library/ms454835.aspx

 Chapter 19 Packaging and Deployment Model 499

P
a

rt
 V

dependent upon feature C, which is hidden, then the dependency chain is allowed. Hidden
features cannot have any dependencies; therefore, the maximum chain depth is two levels.

Feature Properties
With the Feature Designer open, we can set feature properties using the Properties pane in
Visual Studio. For example, we can hide a feature by setting the Is Hidden property to True.
Many of the properties are set automatically by Visual Studio, but the following properties
can also be used to meet specific configuration requirements:

Activate on Default• This Boolean value dictates whether the feature should be
activated when the solution package is deployed.

Always Force Install• The SharePoint deployment mechanism is pretty clever when
it comes to installing features. Because features can be shared by many solutions,
only features that are not already installed are installed when a package is deployed.
Each feature has a unique identifier that’s used as the reference for activation
dependencies and so on. To force an installation when the solution is deployed,
this value can be set to True.

Deployment Path• All features are deployed to their own folder at
%SPROOT%TEMPLATE\FEATURES\. By default, Visual Studio creates folders
named ProjectName_FeatureName. In our project, our feature will be deployed in
a folder named Chapter19_Feature1. We can change the name of this folder by
changing the Deployment Path. (The name Deployment Path is something of
a misnomer; it more accurately contains the Deployment folder name.)

Image URL & Image Alt Text• In the Manage Features page, an icon appears to
the left of each feature’s description. These properties can be used to specify an
alternative image file and appropriate alternative text if required. In no alternative
is specified, the default feature icon will be used.

We’ll look at few other properties, such as Receiver Assembly, Upgrade Actions Receiver
Assembly, and Version in more detail in later sections.

Feature Elements
With a few exceptions, almost all the items we can add to a project using Visual Studio are
packaged as feature elements. In our demonstration project, we added an empty element
named FirstElement; in the Solution Explorer page, we can see that it contains a single file
named Elements.xml. In the Feature Designer, we can click the Manifest button at the
bottom of the page to see the manifest file for the feature:

<Feature xmlns="http://schemas.microsoft.com/sharepoint/"
 Title="Chapter19 Feature1" Id="5fcd733e-2cc9-4363-85fd-dfe7893cb195"
 Scope="Web">
 <ElementManifests>
 <ElementManifest Location="FirstElement\Elements.xml" />
 </ElementManifests>
</Feature>

500 PART V Confi guration

Similar to how the manifest file for the solution was made up of FeatureManifest elements,
we can see that the feature manifest is made up of ElementManifest elements.

Let’s add a more complex element to our project to see how this is represented:

 1. In Visual Studio, choose Project | Add New Item. In the Add New Item dialog,
select List Definition and name the element SampleList.

 2. In the SharePoint Customization Wizard dialog, accept the defaults and then click
Finish. A new SampleList folder will be added to the project, as shown:

If we look at the feature manifest file again, we can see that three new elements have
been added:

<Feature xmlns="http://schemas.microsoft.com/sharepoint/"
 Title="Chapter19 Feature1" Id="5fcd733e-2cc9-4363-85fd-dfe7893cb195"
 Scope="Web">
 <ElementManifests>
 <ElementManifest Location="FirstElement\Elements.xml" />
 <ElementManifest Location="ListInstance1\Elements.xml" />
 <ElementManifest Location="SampleList\Elements.xml" />
 <ElementFile Location="SampleList\Schema.xml" />
 </ElementManifests>
</Feature>

Two new ElementManifest elements point to the new Elements.xml files that were
added and an ElementFile element. This prompts the question, What’s the difference
between an ElementManifest and an ElementFile? We’ll find the answer by examining
the Elements.xml file in the SampleList folder:

<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
 <ListTemplate
 Name="SampleList"

 Chapter 19 Packaging and Deployment Model 501

P
a

rt
 V

 Type="10000"
 BaseType="0"
 OnQuickLaunch="TRUE"
 SecurityBits="11"
 Sequence="320"
 DisplayName="Chapter19 - SampleList"
 Description="My List Definition"
 Image="/_layouts/images/itann.png"/>
</Elements>

In our Elements file, we’re specifying that we are creating a new ListTemplate. Our
Elements file is effectively issuing a command to the deployment framework. If we open
the Schema.xml file, we find much more information contained within it. The Schema file
is effectively a resource file that’s used by the deployment framework to provision our list
template. Another way to look at it is that our ElementManifest files dictate what should
be done, whereas our ElementFile files provide the required resources to do the job.

A number of commands can be issued using ElementManifest files, and although these
are mostly wrapped by a SharePoint Project Item in Visual Studio, a complete list can be
found at http://msdn.microsoft.com/en-us/library/ms414322.aspx.

Although covering the various resource files that can be used by features is beyond the
scope of this chapter (and could fill a book), one very important point needs to be made
here: Although most of the content within a SharePoint site is stored in a content database,
the same is not true for configuration. Much of the configuration for a site is defined within
features, and the element files within the features are actually used to deliver the appropriate
functionality.

To get a better understanding of the significance of this, we can navigate to
%SPROOT%TEMPLATE/FEATURES and then open the TaskList folder. In the folder,
we’ll find a Feature.xml manifest file, which refers to the Tasks.xml ElementManifest file in
the ListTemplates folder. When this feature is activated, the Task List list template is added
to the list of lists that can be created for a SharePoint site. If we examine the contents of the
Tasks folder, we’ll find a schema.xml file. This file defines the schema for every task list that’s
currently in use on the SharePoint farm. Looking through the contents of the Features
folder, we’ll find that much of the functionality of the SharePoint platform is defined here.

Feature Receivers
We’ve used a few feature receivers in some of the example projects in this book. A feature
receiver is basically an event handler responsible for handling installation and activation events
for a feature. We can add feature receivers to any type of feature by right-clicking a Feature
node in the Solution Explorer pane and selecting Add Event Receiver. When we perform
this action, Visual Studio adds a new code file to our project and sets the Receiver Assembly
and Receiver Class properties of the feature to reference the new code file. Let’s do this now:

 1. Right-click the Features node and select Add Feature. A new feature named
Chapter 19 Feature 2 will be added to the project.

 2. Right-click the Feature2 node in the Features folder and select Add Event Receiver.

 3. Double-click Feature2.feature in the Feature 2 folder. In the Properties pane, the
Receiver Assembly and Receiver Class have been automatically set.

http://msdn.microsoft.com/en-us/library/ms414322.aspx

502 PART V Confi guration

In the Feature2.EventReceiver.cs file are five commented methods representing the
events that can be handled by the feature receiver. By uncommenting these methods, we
can add custom code to do whatever we need to do. As you embark on more complex
SharePoint projects, you’ll find that although you can perform much configuration using
the SharePoint Project Items available in Visual Studio, a lot of configuration still needs to
be done programmatically. In these situations, the feature receiver is the tool of choice.
Bearing that in mind, let’s look at how feature receivers work and how we can best make
use of them.

 1. Add the following code to Feature2.EventReceiver.cs:

 public override void FeatureActivated(SPFeatureReceiverProperties properties)
 {
 if (properties.Feature.Parent is SPWeb)
 {
 SPWeb web = properties.Feature.Parent as SPWeb;

 Guid listId=web.Lists.Add("My New List",
 "This is a demonstration list",
 SPListTemplateType.Contacts);
 SPList newList = web.Lists[listId];
 newList.OnQuickLaunch = true;
 newList.Update();
 }
 }

 public override void FeatureDeactivating(
 SPFeatureReceiverProperties properties)
 {

 if (properties.Feature.Parent is SPWeb)
 {
 SPWeb web = properties.Feature.Parent as SPWeb;

 SPList myList = web.Lists.TryGetList("My New List");

 if (myList != null)
 {
 myList.Delete();
 }
 }
 }

 2. Deploy the solution by selecting Deploy Chapter 19 from the Build menu.

If all is well, we’ll find that our blank demo site now contains two new lists: one named
Chapter 19 - ListInstance1, which has been created by the ElementManifest in Feature1,
and another named My New List, which has been created programmatically by our feature
receiver in Feature 2.

Notice in this code snippet that we’re using the properties.Feature.Parent property
to obtain a reference to the SPWeb object on which our feature is being installed. Some
investigation of the Parent property will reveal that it’s of type object, and for that reason

 Chapter 19 Packaging and Deployment Model 503

P
a

rt
 V

we’re checking its type before casting it to a variable of the correct type. To understand why
this is the case, you can take a look at how features are defined within the server object
model, as shown here:

Features can have four possible scopes. When a feature of a particular scope is installed,
it’s added to the Features collection of the appropriate object. For example, a site collection–
scoped feature would be added to the Features collection of the appropriate SPSite object.
The SPFeature object that is returned by properties.Feature can therefore have one of four
possible parents, depending on the scope of the feature.

To confirm that our receiver is working as expected, we can take the following steps:

 1. From the Site Actions menu, select Site Settings, and then select Manage Site
Features from the Site Actions section.

 2. Both Chapter 19 Feature 1 and Chapter 19 Feature 2 are active. Deactivate Chapter
19 Feature 2. Notice that My New List is removed from the site. This confirms that
our feature receiver is working as expected.

Debugging Feature Receivers
Feature receivers can be difficult to debug because they are often executed within a
separate process. To see an example of this problem, put a breakpoint on the first line
of our FeatureActivated method and try debugging using Visual Studio. The code will be
deployed and the feature will be activated, but execution will not stop at the breakpoint.
Visual Studio makes use of a separate process, VSSPHost4.exe, to automate the deployment
process. The Visual Studio debugger, however, is set up to attach to a W3SVC.exe process
only, and therefore the breakpoint is never hit but the code still executes.

504 PART V Confi guration

We can work around this issue in one of two ways: we can either attach a debugger to
the appropriate process, or we can ensure that our feature receiver runs in the W3SVC
process. To ensure that a debugger is attached to the correct process, we can take the
following steps:

 1. Add the following line of code to the method to be debugged:
Debugger.Break();

 2. Start the debugging process as normal. An error dialog will be displayed:

 3. Click Debug The Program, and then in the Visual Studio Just-In-Time Debugger
select the appropriate instance of Visual Studio. Click Yes to begin debugging.

This technique will work regardless of the host process. For example, if PowerShell is
used to install a package, the same error dialog will be displayed.

Our second option is to ensure that the feature receiver code runs in the W3SVC process.
This is relatively easy to do. Earlier when we looked at feature properties, we saw that the
Activate On Default value is used to determine whether a feature should be automatically
installed. We can use this setting as follows:

 1. Remove the line of code that we added in the preceding example.

 2. Double-click the Feature 2 node and set the Activate On Default property to False.

 3. Debug the solution as normal. This time, when the solution is deployed, our
feature will not be automatically activated.

 4. When the web site being debugged is shown in the browser, select Site Settings
from the Site Actions menu, and then select Manage Site Features from the Site
Actions section. Manually activate the feature being debugged. The debugger will
now stop on the breakpoints.

This method works because when features are activated via the user interface, the
feature receiver runs under the W3SVC process, and Visual Studio has attached a debugger
to this process as part of the standard debugging mechanism.

 Chapter 19 Packaging and Deployment Model 505

P
a

rt
 V

Passing Parameters to Feature Receivers
You’ve seen how to create feature receivers and how to pick up references to the object that
you need in order to access the server object model. We’ve looked at a few ways to enable
debugging. Let’s move on to look at more complex feature receivers.

As mentioned, practically every real-world SharePoint project will require some custom
feature receivers. This is especially true when code being developed must be shared among
multiple developers or deployed to testing or staging environments. As a result, it is sensible
to create a library of feature receivers that perform specific configuration tasks. For example,
I have a collection of feature receivers that perform actions such as configuring security for
a site or setting up search scopes. These are actions that are common to many SharePoint
projects but that can’t be performed declaratively.

One essential aspect of creating reusable feature receivers is the ability to pass
configuration into the receiver. Let’s look at a few ways to solve this problem.

The first method is appropriate if a collection of name/value pairs is sufficient for our
purposes.

 1. Open the Feature Designer for Feature 2.

 2. Add the FirstElement element that we created earlier to the feature, as shown:

 3. In the Solution Explorer pane, select the First Element node. Then in the
Properties pane, click the ellipsis next to Feature Properties.

 4. Add two new properties, ListName and ListDescription. Set the values to Another
New List and This is Another list, respectively.

 5. Click OK to close the dialog.

 Although every element in a feature has a Feature Properties property, in reality
the properties are applied at the feature manifest level—that is, the combination
of all the properties that are added to each element in Visual Studio are actually
written within a single Properties element in the feature manifest.

506 PART V Confi guration

 6. Update the code in Feature2.EventReceiver.cs as follows:

 public override void FeatureActivated(SPFeatureReceiverProperties properties)
 {
 if (properties.Feature.Parent is SPWeb)
 {
 SPWeb web = properties.Feature.Parent as SPWeb;
 string listName = properties.Definition.Properties["ListName"].Value;
 string listDescription = properties.Definition.Properties["ListDescription"].Value;
 Guid listId = web.Lists.Add(listName,
 listDescription,
 SPListTemplateType.Contacts);
 SPList newList = web.Lists[listId];
 newList.OnQuickLaunch = true;
 newList.Update();
 }
 }

 public override void FeatureDeactivating(
 SPFeatureReceiverProperties properties)
 {
 if (properties.Feature.Parent is SPWeb)
 {
 SPWeb web = properties.Feature.Parent as SPWeb;
 string listName = properties.Definition.Properties["ListName"].Value;
 SPList myList = web.Lists.TryGetList(listName);
 if (myList != null)
 {
 myList.Delete();
 }
 }
 }

You can see that we’re able to address the properties via the properties.Definition object.
The Definition object is of type SPFeatureDefinition and is an object representation of the
various XML elements that make up the feature.

The next method for solving the problem is appropriate if more complex configuration
is required. For example, when configuring security settings for a site using a feature
receiver, I use this approach to load an XML file containing the security configuration
(see http://spsecurity.codeplex.com/ for more details).

 1. Add an XML file named MyConfig.xml to the FirstElement folder. Add the
following code:

<Lists>
 <List name="1st List" description="1st list description"
 type="Contacts"/>
 <List name="2nd List" description="2nd list description"
 type="Announcements"/>
 <List name="3rd List" description="3rd list description"
 type="Events"/>
</Lists>

http://spsecurity.codeplex.com/for

 Chapter 19 Packaging and Deployment Model 507

P
a

rt
 V

 2. To specify that the MyConfig.xml should be included as an element file, select the
MyConfig.xml node in the Solution Explorer. Then, in the Properties pane, change
the Deployment Type to ElementFile, as shown here:

 3. Update the code in Feature2.EventReceiver.cs as follows:

public override void FeatureActivated(
 SPFeatureReceiverProperties properties)
 {
 if (properties.Feature.Parent is SPWeb)
 {
 SPWeb web = properties.Feature.Parent as SPWeb;
 using (Stream s = properties.Definition.GetFile(
 "FirstElement\\MyConfig.xml"))
 {
 using (XmlReader rdr = XmlReader.Create(s))
 {
 rdr.ReadToDescendant("List");
 do
 {
 string listName = rdr.GetAttribute("name").ToString();

508 PART V Confi guration

 string listDescription = rdr.GetAttribute(
 "description").ToString();
 string listType = rdr.GetAttribute("type").ToString();
 SPListTemplateType typeEnum = (SPListTemplateType)Enum.Parse(
 typeof(SPListTemplateType), listType);
 Guid listId = web.Lists.Add(listName,
 listDescription, typeEnum);
 SPList newList = web.Lists[listId];
 newList.OnQuickLaunch = true;
 newList.Update();
 } while (rdr.ReadToNextSibling("List"));
 }
 }
 }
 }

 public override void FeatureDeactivating(
 SPFeatureReceiverProperties properties)
 {
 if (properties.Feature.Parent is SPWeb)
 {
 SPWeb web = properties.Feature.Parent as SPWeb;
 using (Stream s = properties.Definition.GetFile(
 "FirstElement\\MyConfig.xml"))
 {
 using (XmlReader rdr = XmlReader.Create(s))
 {
 rdr.ReadToDescendant(“List");
 do
 {
 string listName = rdr.GetAttribute("name").ToString();
 SPList myList = web.Lists.TryGetList(listName);
 if (myList != null)
 {
 myList.Delete();
 }
 } while (rdr.ReadToNextSibling("List"));
 }
 }
 }
 }

When we deploy the solution and activate the feature, three new lists will be added to
the site as specified in the MyConfig.xml file. In this example, we’ve used an XmlReader
to parse the configuration file for the sake of keeping the example simple. In a real-world
solution, using an XmlSerializer to deserialize the configuration file into an appropriate
collection of objects would be more robust.

Upgrading Features
In SharePoint 2010, one of the important new capabilities from a packaging and deployment
perspective is the ability to upgrade features. In previous versions, an upgrade was possible,
but it was more a case of replacing an old feature with a new version. This could leave a
system in an indeterminate state, because actions performed by the old feature would not

 Chapter 19 Packaging and Deployment Model 509

P
a

rt
 V

necessarily be undone when a new version of the feature was installed. For example, if a
feature created a list that users subsequently populated with data and then a new version
of the feature created a new version of the list with a different name, the result of deploying
the new feature would be two lists. A better approach would be to rename the old list.

With the upgrade capabilities in SharePoint 2010, we can define a number of upgrade
actions declaratively in the feature manifest, and for more complex upgrade processes we
can also use a feature receiver to make any changes programmatically.

Using PSCONFIG.EXE
We can trigger an upgrade in a few different ways, including using the psconfig tool to
upgrade all features within a farm. This tool is useful when many features have been
updated, since it’s a pretty lengthy process. For example, if a service pack updates many
system features, running psconfig will ensure that instances of the updated features are
upgraded where appropriate.

Let’s look at several possible psconfig commands. This command performs a version-to-
version upgrade:

psconfig.exe -cmd upgrade -inplace v2v

Feature versions are in the format major.minor.build.build. When using a version-to-version
upgrade, only features in which the major or minor version number has changed will be
upgraded. So for a feature with version 1.0.0.0, if we deploy a new build with the version
1.0.1.234, no upgrade will be performed. However, if we deploy version 1.1.1.234, an
upgrade will be performed because the minor version number has changed.

This command performs a build-to-build upgrade:

psconfig.exe -cmd upgrade -inplace b2b

By using this mode, we ensure that any changes to the version number will trigger an
upgrade. So, for example, version 1.0.0.0 will be upgraded if version 1.0.0.1 is deployed.

Using PowerShell
A quicker way to upgrade an individual feature instance is to use PowerShell. Follow these
steps to see the upgrade process in action:

 1. Open the Feature Designer for Feature2. In the Properties pane, set the version
number to 1.0.0.0. Where no version number is specified, a default of 0.0.0.0 is
assumed. Version numbers must contain four components.

 2. From the Build menu, select Deploy. This will deploy our version 1 solution to
the farm.

 3. In the Feature Designer, click the Manifest button at the bottom of the page.
Expand the Edit Options section to display the Manifest Template. Replace the
template XML with the following:

<?xml version="1.0" encoding="utf-8" ?>
<Feature xmlns="http://schemas.microsoft.com/sharepoint/">
<UpgradeActions>
<VersionRange>
<CustomUpgradeAction Name="MyUpgrade"/>
</VersionRange>
</UpgradeActions>
</Feature>

510 PART V Confi guration

 By attaching this XML to the feature definition, we’re defining the steps that
should be taken to upgrade existing features. The CustomUpgradeAction element
specifies that we’re using a feature receiver to perform the upgrade programmatically.
In this example, we haven’t specified a version range, so this upgrade action will
apply for all versions. If we needed to include different upgrade actions for
different versions we could add this:

<Feature xmlns="http://schemas.microsoft.com/sharepoint/">
 <UpgradeActions>
 <VersionRange BeginVersion="1.0.0.0" EndVersion="2.0.0.0">
 <CustomUpgradeAction Name="V2Upgrade"/>
 </VersionRange>
 <VersionRange BeginVersion="2.0.0.0" EndVersion="3.0.0.0">
 <CustomUpgradeAction Name="V3Upgrade"/>
 </VersionRange>
 </UpgradeActions>
</Feature>

 4. In the Properties pane, change the Version number for Feature 2 to 2.0.0.0.

NOTE Within the Properties pane are options to set the Upgrade Actions Receiver Assembly and Class
properties. These properties allow a feature to use a separate assembly for handling standard feature
events such as Activate and Deactivate and a separate assembly for handling upgrade events. This
facility is useful for retrofitting upgrade capabilities to a feature if the existing receiver assembly isn’t
available or can’t be altered for some reason.

 5. For the sake of simplicity, we’ll implement our upgrade code in our existing feature
receiver. In the Feature2.EventReceiver.cs file, add the following code:

public override void FeatureUpgrading(
 SPFeatureReceiverProperties properties,
 string upgradeActionName,
 IDictionary<string, string> parameters)
 {
 switch (upgradeActionName)
 {
 case "MyUpgrade":
 if (properties.Feature.Parent is SPWeb)
 {
 SPWeb web = properties.Feature.Parent as SPWeb;
 using (Stream s = properties.Definition.GetFile(
 "FirstElement\\MyConfig.xml"))
 {
 using (XmlReader rdr = XmlReader.Create(s))
 {
 rdr.ReadToDescendant("List");
 do
 {
 string listName = rdr.GetAttribute("name").ToString();
 SPList myList = web.Lists.TryGetList(listName);

 if (myList != null)
 {
 myList.Description += "- Updated";

 Chapter 19 Packaging and Deployment Model 511

P
a

rt
 V

 myList.Update();
 }
 } while (rdr.ReadToNextSibling("List"));
 }
 }
 }
 break;
 default:
 break;
 }
 }
 }

 Notice the use of a switch block in this code snippet to handle the
upgradeActionName. This value is specified in the Name attribute of the
CustomUpgradeAction element in the feature manifest.

 6. If we deploy our updated feature using Visual Studio, our existing version will be
removed first, which will make it impossible to test our upgrade process. Instead,
we’ll package our solution using Visual Studio and deploy it manually. From the
Build menu, select Package.

 7. To test our upgrade process quickly, we can use PowerShell to upgrade a single
feature. Choose Start | SharePoint 2010 Management Shell, and then enter the
following script:

update-spsolution -identity Chapter19.wsp -literalpath c:\code\chapter19\
chapter19\bin\debug\chapter19.wsp -gacdeployment

NOTE This command should be entered as a single line.

 8. This command will upgrade the Chapter19 solution package to the latest version.
We can confirm this by entering the following script:

$featureName="Chapter19_feature2"
$latestVersion=(get-spfeature|where {$_.DisplayName -eq $featureName}).Version
$web=get-spweb http://<your Server Name>/chapter19
$theFeature=$web.Features|Where {$_.Definition.DisplayName -eq $featureName}
$currentVersion=theFeature.Version
write-host "Current Version: $currentVersion, Latest Version: $latestVersion"

 If all is well, the resultant output should be this:

Current Version: 1.0.0.0, Latest Version: 2.0.0.0

 9. We can upgrade a single feature using the following script:

$web=get-spweb http://<your Server Name>/chapter19
$theFeature=$web.Features|Where {$_.Definition.DisplayName -eq $featureName}
$theFeature.Upgrade($false)

 10. Any errors that occur as part of the upgrade process will be shown in the PowerShell
window. However, we can confirm that our upgrade was successful by issuing the
following command:

write-host ($theFeature).Version

 The new version number should be reported as 2.0.0.0.

512 PART V Confi guration

Site Definitions
So far in this chapter, you’ve seen how we can package our customizations using features
and solutions. By using these methods, we can activate and deactivate particular features to
achieve our desired level of functionality. This process works well if we’re adding functionality
to an existing site, but what happens if we want to create a new site that uses functionality
that’s encapsulated in a number of features? As we did in an earlier example, we could start
out with a blank site and enable the appropriate features. However, SharePoint provides a
better way to achieve this result. We can create a custom site definition.

To understand how a custom site definition fits into the overall picture, select New Site
from the Site Actions menu on any SharePoint site. Each of the items listed in the Create
dialog is an example of a site definition. Basically, a site definition is a template that can be
used to create new sites. By creating a custom site definition, we can specify how a new site
is provisioned, including which features should be activated and which lists and libraries
should be created by default.

NOTE Regarding site definitions versus site templates, from SharePoint Designer, we can save a site as a
site template. When using this function, we’re actually creating a WSP package that contains a list of
customizations to whatever site definition the site was created from. This type of site template can
then be applied to other sites that are derived from the same site definition. This functionality differs
from that of creating a custom site definition because site definitions can be used only when
creating new sites.

Confusingly, site definitions as stored on each front-end server in the
%SPROOT%TEMPLATE\SiteTemplates folder. In a similar manner to features,
each site definition has its own folder. The site definition configuration is stored in
a file named onet.xml within the XML folder.

Site definitions have been part of SharePoint since day 1, whereas the feature
framework was introduced in Windows SharePoint Services 3.0 to provide a higher degree
of flexibility. As a result of this, site definitions come with some serious baggage and can
be pretty complex. The recommended approach with SharePoint 2010 is to factor as much
configuration into features as possible. This helps to keep site definition files maintainable
while still allowing a high degree of flexibility.

TIP When creating site definitions, bear in mind that future service packs for SharePoint may overwrite
out-of-the-box files. Always create a separate folder for any customized site definitions. As you’ll see
when using Visual Studio, this approach is adopted automatically.

Creating Site Definitions Using Visual Studio
Let’s look at how we can create a new site definition using Visual Studio.

 1. Choose File | Add | New Project.

 2. In the Add New Project dialog, select Site Definition and name the new project
Chapter19DemoSite, as shown:

 Chapter 19 Packaging and Deployment Model 513

P
a

rt
 V

A new project is added containing the following files:

onet.xml• Contains the site definition markup. Each onet.xml file can contain
more than one configuration, where a configuration is for all intents and purposes
a site definition.

webtemp-Chapter19DemoSite.xml• The SharePoint platform builds a list of
available templates by examining the %SPRoot%Template\1033\xml\ folder for
XML files with names beginning with webtemp. These files act as a table of contents
for the site definitions that are stored in each onet.xml file.

default.aspx• As you’ll see when we look at the onet.xml file, the default.aspx file
is deployed to the root of a new site that’s created using our custom site definition.
Without this file, there would be no home page for the site.

If we examine the onet.xml file that’s been added to our project automatically, we’ll
find the following XML:

<Project Title="Chapter19DemoSite" Revision="2"
 ListDir="" xmlns:ows="Microsoft SharePoint"
 xmlns="http://schemas.microsoft.com/sharepoint/">
 <NavBars>
 </NavBars>
 <Configurations>
 <Configuration ID="0" Name="Chapter19DemoSite">
 <Lists/>
 <SiteFeatures>
 </SiteFeatures>
 <WebFeatures>
 </WebFeatures>
 <Modules>

514 PART V Confi guration

 <Module Name="DefaultBlank" />
 </Modules>
 </Configuration>
 </Configurations>
 <Modules>
 <Module Name="DefaultBlank" Url="" Path="">
 <File Url="default.aspx">
 </File>
 </Module>
 </Modules>
</Project>

NOTE Site definitions can get pretty complex. A full discussion of each of the elements in the onet.xml
file and how each can be used is beyond the scope of this chapter. For more information, see
http://msdn.microsoft.com/en-us/library/ms474369.aspx.

Configurations
The most important element in the onet.xml file is the Configuration element. Each file
can contain more than one Configuration element, and each element must have a unique
ID. The Configuration element effectively defines a distinct site definition. Our file has a
single site definition named Chapter19DemoSite, which refers to a module named
DefaultBlank.

Modules
Our onet.xml file also contains a Modules section that is outside the Configurations
section. These modules can be shared between all configurations in the file. Modules are
used to provision files to a SharePoint site and can also be added as feature elements by
adding a Module item to a project. In our sample, the default.aspx file is being provisioned
to the root of the new site.

Site Features/Web Features
As mentioned, with SharePoint 2010, the recommended approach to creating site definitions
is to use features as much as possible. We can specify which features are automatically
activated when a site is created by adding Feature nodes to the SiteFeatures and WebFeatures
elements. These elements represent features that should be activated at the Site collection
level and features that should be activated at the site level.

Add the following XML to the WebFeatures node:

<WebFeatures>
 <!--Chapter19_Feature2-->
 <Feature ID="69d95a17-8c35-4bbb-9a79-4154fc55be6a" />
 <!--Chapter19_Feature1-->
 <Feature ID="5fcd733e-2cc9-4363-85fd-dfe7893cb195" />
</WebFeatures>

Features are referenced using their unique identifier. To find the identifier for a
particular feature, you can use a few techniques. If the feature is a custom feature, the
identifier can be found in the Feature ID property that can be seen in the Properties pane

http://msdn.microsoft.com/en-us/library/ms474369.aspx

 Chapter 19 Packaging and Deployment Model 515

P
a

rt
 V

in the Feature Designer. If the feature is an out-of-the-box or third-party feature that’s
already installed on a server, the following PowerShell command can provide a list:

get-spfeature|select DisplayName,Id

Our site definition will now automatically activate our two features when a new site is
created. Deploy the solution by choosing Build | Deploy in Visual Studio.

After the deployment process has completed, navigate to the sample site that we created
earlier, and then select New Site from the Site Actions menu. In the Create dialog, select
Chapter19DemoSite from the SharePoint Customizations category. Name the new site
Demo and then click Create. A new site will be created, as shown, that contains the lists
defined by our features:

Summary
In the real world, packaging and deployment is a big part of any SharePoint project.
The new tooling in Visual Studio makes it much easier for developers to create packages
automatically to manage our custom solutions, but in all but the simplest projects, some
aspect of coding will be involved in deploying a SharePoint solution. In this chapter, you’ve
seen how to make use of the feature framework to deploy solutions as a series of modular
components. You also learned about the new feature upgrade functionality in SharePoint
2010 that will allow users to upgrade older versions of our applications seamlessly.

This page intentionally left blank

20
CHAPTER

517

PowerShell

In previous versions of SharePoint, command line configuration was available via the
STSADM tool. Although the tool is still available for use with SharePoint 2010, the
recommended approach for managing a SharePoint farm via the command line is to use
the new SharePoint 2010 Management Shell. This shell is a PowerShell instance with a
collection of SharePoint-specific cmdlets (pronounced command-lets) installed. In this
chapter, we’ll take a look at the new command shell and a few of the main cmdlets.

PowerShell Primer
PowerShell is a powerful scripting environment that leverages the flexibility of the .NET
Framework to allow command line users to develop scripts and utilities that can automate
administrative tasks. Unlike many command line tools, PowerShell has been designed to
deal with objects rather than plain text output. Most command line tools are effectively
executables and as such can read only text-based input from the command line and return
only text-based output to the console. PowerShell introduces the concept of a cmdlet,
PowerShell-specific commands that are derived from the System.Management.Automation
.Cmdlet class and are created using the .NET Framework. PowerShell uses an object
pipeline to pipe the output of one cmdlet to the next cmdlet in a chain so that objects
can be passed between functions simply.

Many cmdlets are available for use with PowerShell, and users are free to create their
own cmdlets using tools such as Visual Studio. To make it easier for you to manage cmdlets,
they are commonly packaged together as snap-ins. Snap-ins usually contain all of the
cmdlets for managing particular products or services. For example, the Microsoft.
SharePoint.PowerShell snap-in contains the out-of-the-box snap-ins for SharePoint 2010.

When using legacy command line tools, you may find it difficult to remember the
names of the various tools. No standard is used for naming or passing parameters. For
PowerShell cmdlets, a verb-noun naming convention has been adopted, which makes it
easier for users to guess the name of a command. By using the get-command cmdlets, you

518 PART V Confi guration

can get a list of the commands that are available. This command also accepts -verb or -noun
as parameters for filtering the output. For example, you could enter the following command
to retrieve a list of commands relating to the SPWeb object:

get-command -noun spweb

As well as a standard naming convention for cmdlets, PowerShell also imposes a
standard convention for passing parameters. Parameters are always preceded with a
hyphen. You can see this in the preceding example. You can view help for a particular
cmdlet by passing the parameter -?.

One really useful feature of the PowerShell command line interface is the ability to
use tab expansion. As developers, we’ve become used to having tools such as IntelliSense to
remind us of our options as we enter code. The same idea works with PowerShell: When
entering a command name, if we enter part of the name and then repeatedly press the
tab key, we can cycle through the available commands matching our input. When entering
parameters for a command, if we enter the preceding hyphen we can also cycle through
the list of available parameters. These two features, combined with a standard naming
convention, make learning PowerShell scripting a relatively straightforward process.

Using Objects
As mentioned, PowerShell deals with objects rather than text. This means that you can
often set or query properties or execute methods on the object that is returned by a
particular cmdlet. For example, the following command returns an SPWeb object :

Get-SPWeb -Identity http://localhost

If we execute this command, we’ll find that a URL is returned. This is the default output
when no specific property has been called.

We can get a list of the available members for the resultant SPWeb object by passing the
output of this command to the get-member command using the pipe character, as follows:

Get-SPWeb -Identity http://localhost|get-member

After we’ve found the property in which we’re interested, we can either retrieve the
value by placing parenthesis around the command or by assigning the output of the
command to a variable and then querying the variable:

(Get-SPWeb -Identity http://localhost).Title

or

$web=Get-SPWeb -Identity http://localhost
$web.Title

 Chapter 20 PowerShell 519

P
a

rt
 V

PowerShell variables are always prefixed with $ and persist for the duration of a session.
We can examine the type of a variable by using the GetType method as shown:

$web.GetType()

If we need to view more than one property from an object or collection of objects, you
can use the Select-Object cmdlet to specify the properties that you require:

(Get-SPFarm).Service|Select-Object -Property TypeName,Status

This command will return a list of services on a farm along with their statuses. Here’s
another way to write the same command:

(Get-SPFarm).Service|select TypeName,Status

This shortened version of the Select-Object command uses a technique known as aliasing.
Many commonly used commands have simpler aliases, and a full list can be retrieved using
the following command:

Get-Alias

As well as being able to specify which properties are shown when displaying a collection
of objects, we can also filter which objects appear in the collection by using the Where-Object
cmdlet. Again, this cmdlet has an alias: Where.

Let’s consider the properties that are available for this cmdlet. Table 20-1 shows the
comparison operators.

Table 20-1 Comparison Operators

Comparison Operator Meaning Example (Returns True)

-eq is equal to 1 -eq 1

-ne Is not equal to 1 -ne 2

-lt Is less than 1 -lt 2

-le Is less than or equal to 1 -le 2

-gt Is greater than 2 -gt 1

-ge Is greater than or
equal to

2 -ge 1

-like Is like (wildcard
comparison for text)

"file.doc" -like "f*.do?"

-notlike Is not like (wildcard
comparison for text)

"file.doc" -notlike "p*.doc"

-contains Contains 1,2,3 -contains 1

-notcontains Does not contain 1,2,3 -notcontains 4

520 PART V Confi guration

As well as comparison operators, we can combine comparison by using the logical
operators shown in Table 20-2.

Using these two techniques, we can create queries such as this:

(Get-SPFarm).Services|Where {$_.TypeName -Like "*data*"}|Select TypeName, Status

Note the use of the $_ variable. This is a system-defined variable that evaluates to the
current object in the object pipeline—in other words, the output of the preceding command.
When the preceding command returns an enumerable collection, the where command will
iterate through the collection; therefore, $_ will evaluate to an instance of an object in the
collection rather than the entire collection.

Using Functions
As well as being able to execute command chains and use variables, we can also define
functions using PowerShell. These functions work similarly to those in any other programming
language—the only minor difference is that all uncaptured output within a function is
returned to the caller. For example, we can create the following simple function:

function addNumbers($first,$second)
{
"Adding numbers"
return $first + $second
}

We can call this function by entering the command (note the method of passing named
parameters):

addNumbers -first 1 -second 2

Here’s the resultant output:

Adding numbers
3

Logical Operator Meaning Example (Returns True)

-and Logical and; true if both sides
are true

(1 -eq 1) -and (2 -eq 2)

-or Logical or; true if either side
is true

(1 -eq 1) -or (1 -eq 2)

-not Logical not; reverses true
and false

-not (1 -eq 2)

! Logical not; reverses true
and false

!(1 -eq 2)

Table 20-2 Logical Operators

 Chapter 20 PowerShell 521

P
a

rt
 V

This is expected. However, what isn’t expected is that if we examine the data type of the
return value by piping the output to Get-Member, we find two return types, string and
int32. If we want to use our function in a chain, this is not ideal. The reason this has
happened is that the Adding Numbers message is uncaptured output—that is, it isn’t
assigned to a variable or passed to a cmdlet—and as a result it forms part of the output.
We can prevent this from occurring by modifying the function as follows:

function addNumbers($first,$second)
{
Write-Host "Adding numbers"
return $first + $second
}

PowerShell for SharePoint
Now that you understand what PowerShell is and how it works, let’s move on to look at its
uses in administering SharePoint. More than 530 cmdlets are included in the Microsoft.
SharePoint.PowerShell snap-in, so we won’t cover all of them. Hopefully, the discussion so
far has given you the tools you need to be able to find the correct command for a particular
task.

First things first. Where can we find PowerShell? When running on a SharePoint server,
two possibilities exist: either select the SharePoint 2010 Management Shell from the Start
menu or open a command prompt and enter the following:

PowerShell

If we’re using the SharePoint management shell, the SharePoint snap-in will already be
installed. If we’re using a standard PowerShell console, we can install the snap-in by entering
the following command:

Add-PSSnapIn Microsoft.SharePoint.PowerShell

We can check the list of installed snap-ins by using this command:

Get-PSSnapIn

Connecting to SharePoint Remotely
One of the real benefits of PowerShell is its ability to connect to remote machines. We
can open a PowerShell session on a client machine and then use remoting to connect to
a SharePoint server. To enable remoting on the server, enter the following command:

Enable-PSRemoting

This command will enable the WinRM service and set up the firewall to allow incoming
sessions.

After the server has been configured, we can connect from any client machine by
entering the following command:

Enter-PSSession "Server Name" -Credential (Get-Credential)

522 PART V Confi guration

NOTE If the client machine is running on a domain and your SharePoint server is running as a stand-
alone server, a few other steps are necessary to enable remote connectivity, such as configuring
Secure Sockets Layer (SSL) connectivity on the server. A full discussion of these steps is outside the
scope of this chapter. See http://msdn.microsoft.com/en-us/library/aa384372(VS.85).aspx for
more information.

After a remote connection has been established, the SharePoint snap-in can be added
with the command:

Add-PSSnapin Microsoft.SharePoint.PowerShell

PowerShell Permissions
To use SharePoint cmdlets, a user must be a member of the SharePoint_Shell_Access role
for the farm configuration database as well as a member of the WSS_ADMIN_WPG group
on the SharePoint front-end server. To grant users the appropriate permissions, use the
following command:

Add-SPShellAdmin -Username domain\username -database (Get-SPContentDatabase
-webapplication http://Web app name)

Each user must be explicitly granted permissions to every database to which he or she
needs access. By default, only the account used to set up SharePoint will have permission to
execute this command.

Working with Site Collections and Sites
Most of the cmdlets commonly used in the management of site collections or sites end in
SPSite or SPWeb. To pick up a reference to a site collection, we can use the following:

$site=Get-SPSite -Identity http://siteurl

Or we can return a list of all site collections by using this:

Get-SPSite

When it comes to managing site objects (SPWeb), we can pick up a specific web site
using this:

$web=Get-SPWeb -Identity http://weburl/

To return a list of sites, we need to use either the Site parameter or an SPSite object:

Get-SPWeb -Site http://SiteUrl

or

Get-SPWeb -Site $site

http://msdn.microsoft.com/en-us/library/aa384372(VS.85).aspx

 Chapter 20 PowerShell 523

P
a

rt
 V

Creating Site Collections and Sites
We can create a new site collection using the New-SPSite cmdlet:

New-SPSite -Url http://localhost/Sites/NewSiteCollection - OwnerAlias username

We can also add new sites using the New-SPWeb cmdlet:

New-SPWeb -Url http://localhost/Sites/NewSiteCollection/NewWeb -Name MyNewWeb

Deleting Site Collections and Sites
We can delete site collections and sites by using the Remove-SPSite or the Remove-SPWeb
cmdlet.

Remove-SPWeb -Identity http://localhost/Sites/NewSiteCollection/NewWeb

or

Remove-SPSite -Identity http://localhost/Sites/NewSiteCollection

Setting Properties on SharePoint Objects
When setting properties on the objects returned by SharePoint management cmdlets, we
need to call the Update method in the same manner as when updating properties using the
Server Object Model. Here’s an example:

$web=SP-GetSPWeb -Identity http://myweburl
$web.Title="My New Title"
$web.Update()

Working with Lists and Libraries
Similarly to how lists and libraries are accessed in the Server Object Model, they can be
accessed via SPWeb objects. For example, we can enumerate the lists on a site using the
following:

Get-SPWeb -Identity http://myweburl | Select -Expand lists| Select Title

We can add new lists using the Add method of the Lists property:

Get-SPWeb -Identity http://myweburl | ForEach {$_.Lists.Add("My Task List", "",
$_.ListTemplates["Tasks"])}

Changing the Business Connectivity Thresholds
The maximum number of rows that can be retrieved via a Business Connectivity Services
(BCS) connection is limited. The only way to change this value is via PowerShell. We can
use the following command to retrieve the current settings:

$proxies=Get-SPServiceApplicationProxy | Where {$_.TypeName -like "Business Data*"}
$rule=Get-SPBusinessDataCatalogThrottleConfig -ServiceApplicationProxy $proxies -Scope
Database -ThrottleType Items
$rule

524 PART V Confi guration

We can then update the value using the following:

Set-SPBusinessDataCatalogThrottleConfig -Identity $rule -Maximum 10000 -Default 10000

Working with Content
We can retrieve a list of all items in a site using the following:

Get-SPWeb -Identity http://myweburl | Select -Expand Lists | Select -Expand Items |
select Name, Url

Or we can apply a filter to show only documents:

Get-SPWeb -Identity http://myweburl | Select -Expand Lists | Where {$_.BaseType -eq
"DocumentLibrary"} | Select -Expand Items | select Name, Url

We can also make use of filters to search for a specific item:

Get-SPWeb -Identity http://myweburl | Select -Expand Lists | Select -Expand Items |
Where {$_.Name -like "foo*"} | select Name, Url

Creating New Documents
To create a new document in a document library, use the following:

function New-SPFile($WebUrl, $ListName, $DocumentName,$Content)
{
$stream = new-object System.IO.MemoryStream
$writer = new-object System.IO.StreamWriter($stream)
$writer.Write($content)
$writer.Flush()
$list=(Get-SPWeb $WebUrl).Lists.TryGetList($ListName)
$file=$list.RootFolder.Files.Add($DocumentName, $stream,$true)
$file.Update()
}
New-SPFile -WebUrl "http://myweburl" -ListName "Shared Documents" -DocumentName
"PowerShellDocument.txt" -Content "Document Content"

Working with Timer Jobs
As you’ve seen in a few of the chapters in this book, SharePoint makes use of timer jobs to
perform a lot of back-end processing. We can use PowerShell to get a list of all timer jobs:

Get-SPTimerJob

Or we can get a list of job failures grouped by the job name:

Get-SPTimerJob | Select -Expand HistoryEntries | Where {$_.Status -ne "Succeeded"} |
group JobDefinitionTitle

 Chapter 20 PowerShell 525

P
a

rt
 V

Summary
PowerShell lets us manage SharePoint from the command line. We can perform many of
the same actions using PowerShell that we performed using the Server Object Model. Users
who are unfamiliar with PowerShell will need to take time to learn the language, but as
developers we’re already familiar with the basic concepts and general syntax of the language
largely due to its similarity to C#.

Although this was not covered in this chapter, we can easily create custom PowerShell
cmdlets to assist in the management of our custom SharePoint applications. These custom
cmdlets can then be integrated into other SharePoint administration scripts by system
administrators, making our custom applications configurable and maintainable using a
familiar toolset.

For those of us who “grew up” with STSADM, we may be tempted to put off learning
PowerShell, but as you’ve seen in this chapter, the level of flexibility that it offers is well
worth the effort. Farewell STSADM; you served us well, but you had your day!

This page intentionally left blank

Index

527

A

abstract classes, 173
Action rules, 101
actions, 226, 390, 420–422
activation dependencies, 497–498
AdditionalPageHead control, 47
administration classes, 20–21
administrators, 115
Advanced mode, 35
anonymous delegates, 340
AppId, 101, 175, 392
application pages, 33, 35–36
Application Services

event receivers, 8:9–167
handling events, 153–158
overview, 153–167

application-level integration, 6
applications

console. See console
applications

custom activities for,
455–461

debugging. See debugging
Office. See Office applications
remote, 174
rich client, 64, 124, 390
service. See service

applications
web, 6, 14, 86, 269

ASP.NET framework, 122, 123,
153–154

ASP.NET pages, 37
assemblies

deploying, 496
third-party, 10

associations, 215, 316, 392, 396
audio files, 121
authentication, 389

B

BA (business analytics), 463
backup/restore functionality, 15–16
BaseFieldControl class, 328–330
BCS (Business Connectivity

Services), 387–422
Business Data Catalog,

387–391
changing thresholds, 523–524
components, 388–391
demonstration scenario,

391–392
described, 388
.NET connectivity assemblies,

404–417
rich client integration, 390

BCS data
associations, 392
connecting to via SharePoint

Designer, 392–404
in external data columns,

418–422
BDC (Business Data Connectivity),

426–427
BDC metadata, 391
BDC Model projects, 405–417
BDCM files, 407
BI (Business Intelligence), 463–489

business user experience, 464
Microsoft BI solution,

464–465
overview, 463–464
PerformancePoint Services,

469–480
PowerPivot, 480–485
Reporting Services, 485–489
SharePoint BI platform,

465–489

BI solutions, 464, 469–480
BLOB data, 121–122
BPM (business performance

management), 463–464
BrowserForm web part, 81–86
build script, 357
business analytics (BA), 463
Business Connectivity Services.

See BCS
Business Data Association

web part, 390
Business Data Catalog, 387, 390.

See also BDC
Business Data Connectivity. See BDC
Business Intelligence. See BI
business performance management

(BPM), 463–464
business productivity

infrastructure, 464
business user experience, 464
buttons

data generation,
358–361

disabling, 47
Hello World, 46–47

C

CAB (cabinet) files, 494
cabinet (CAB) files, 494
CAML (Collaborative Application

Markup Language), 10, 337
CAML queries

considerations, 10, 332,
333, 366

example of, 332–333
retrieving, 65–68
vs. SQL, 367

CAML Query Builder, 10

528 Index

CAML syntax, 337, 375
canHandleCommand method, 50
CAS (custom code access security), 29
Cascading Style Sheets (CSS),

137–139
change conflicts, 381–384
ChangeConflictException property,

343, 378
ChangeConflicts property, 343, 377,

381, 382
Chart web part, 469
charts

analytic, 278
date range, 282
PivotCharts, 280–281

child objects, 362–364
child sites, 15, 17
classes. See also specific classes

abstract, 173
administration, 20–21
client-side, 179–181
configuration, 20–21
content access, 20–21
entity, 353–357
receiver base, 154–155
server-side, 176–179
site provisioning, 20–21

client object model, 53–77
adding data, 71–72
architecture, 53–54
client-side objects, 61–64
deleting data, 74–75
demonstration environment,

55–61
described, 53
dialogs, 76–77
JavaScript, 53, 60–61, 64
namespaces, 61
notifications, 76
retrieving data, 65–71
Silverlight, 53–60
status bar, 75–76
updating data, 72–74

ClientContext object, 61–64
client/server communication, 173
client-side implementation, 171–172
client-side objects, 61–64
Client.svc service, 54
cmdlets, 517–518
code-behind file, 36, 103–105
Collaborative Application Markup

Language. See CAML

ColorPicker control, 46
columns, 321–330. See also site

columns
associating content types with,

322–323, 349–350
external data, 388–389,

418–422
field controls, 123–124
field types, 323–330
indexing, 335–336
libraries and, 331–332
lists and, 331–332
lookup, 322, 352–353, 450, 457
overview, 321–323
types of data used in, 322
validation, 330

COM component, 25
COM errors, 257
Command attribute, 46
CommandPreview attribute, 46
CommandRevert attribute, 46
CommandUIHandler element, 46
common query language, 431–432
comparison operators, 519–520
concurrency errors, 378–381
configuration classes, 20–21
Configuration element, 514
configuration files, 24
conflict resolution objects, 344
ConflictMode setting, 381, 384
connections. See data connections
connectivity assemblies, 391,

404–417
connector frameworks

BDC, 391
pluggable, 391, 405
search connector, 424–427

console applications
configuring, 19–20
creating, 18–19
debugging, 12–13
unit testing, 12–13

content
considerations, 107
containers for, 331
custom content types, 118,

208–209, 348–350
JSOM, 299–300
organizing, 112–114
overlapping, 428
PerformancePoint, 474–475
PowerShell, 524

publishing, 124–130
rich media, 121
updates to, 428
user-generated, 34
users of, 114–115

content access classes, 21–25
content creators, 115
content deployment, 130
Content Editor web part, 298–299
content fields, 127
Content Management Server, 3
Content Organizer feature, 112–114
content pages, 34, 35
Content Query web part, 131
content sources, 427–428
content types, 311–321

associating columns with,
322–323, 349–350

associating with lists, 351
associating workflows with,

239–240, 316
creating, 348–350
custom, 118, 208–209,

348–350
document sets, 116–118
enterprise, 318–321
grouping, 315–316
identifiers, 312–315
libraries, 331–332
lists and, 331–332, 349
media, 120–121
metadata, 316–318
multiple, 332
overview, 311–316
page layouts and, 123–125
PerformancePoint, 465,

467–470
relationships between,

352–353
site, 118, 125, 209, 332

ContentTypes collection, 331–332
controls. See also specific controls

adding to ribbon, 42–45
disabling on ribbon, 47
examples of, 41
field, 123–124, 324–330
groups of, 41
predefined, 46
safe, 496
ScriptLink, 48
server, 34, 127, 140, 145

crawl architecture, 424

 Index 529

crawl components, 424, 426, 427
crawl rules, 428
Create All Operations wizard,

398–399
credentials, 389
cross-site scoping, 319
CSS (Cascading Style Sheets),

137–139
custom code access security (CAS), 29
custom entity objects, 414–417
custom ranking models, 435
CustomAction elements, 43–44, 48

D

Dashboard Designer, 470–472, 477,
484–485

dashboards, creating, 475–476
data. See also external data entries;

metadata
adding via client object

model, 71–72
adding via LINQ, 358–361
BCS. See BCS data
BDC, 391
BLOB, 121–122
change conflicts, 381–384
concurrency errors, 378–381
deleting via LINQ, 361–365
deleting with Client Object

Model, 74–75
filtering, 68–70
locating via anonymous

delegates, 340
locating via iterators, 339–340
locating via Lambda

expressions, 340–341
locating via LINQ, 341
OLAP, 472–474, 476, 481
querying. See queries
retrieving, 64–71
social, 443–462
structuring, 444–445
synchronizing, 445–446
updating via Client Object

Model, 72–74
updating via LINQ to

SharePoint, 375–384
data access

columns. See columns
considerations, 311
content types. See content types

document libraries. See
document libraries

lists. See lists
overview, 311–336
performance, 333–336
stereotyping, 392–394,

408–414
data access layer, 311, 338
Data Analysis Expressions (DAX), 483
data connection libraries, 99, 272,

300–308
data connections

configuring, 276
exporting, 261, 276, 308
ODC, 302, 303, 470
PerformancePoint, 471–474
restricting, 301–302
trusted, 272, 301, 303, 304
UDCX, 471
used by Excel, 276

data generation buttons, 358–361
data infrastructure, 464–465
data picker, 398, 400–404
data providers, 272
data structures, 346–353
Data View controls, 127
databases

Access, 6
BDC and, 391
multiple, 14
user, 445–446

DataContext objects, 342–344, 376,
380–381

DAX (Data Analysis Expressions), 483
De Smet, Bart, 338
debug script files, 49
debugging

console applications, 12–13
Developer Dashboard, 28–29
feature receivers, 503–505
sandboxed solutions, 30
Sysinternals DebugView, 11
user-defined files, 294–295
Visual Studio Debugger, 295,

503–504
.debug.js extension, 49
DebugView, 11, 29
decomposition tree, 480
delegate controls, 47–49, 136–137
dependency chains, 498–499
deployment. See packaging/

deployment model

Desktop Experience feature, 12
Developer Dashboard, 28–29
Developer toolbar, 28–29
development environment

defining SPRoot environment
variable, 12

development server
configuration, 11–13

enabling Desktop Experience
feature, 12

platform development tools,
9–11

setting up, 11
development server configuration,

11–13
Dialog framework, 76–77
digital asset management, 120–122
disk-based caching, 121–122
Document content type, 113, 331,

348, 358
Document ID service, 118–119
Document Information Panels,

93–96
document libraries. See also libraries

creating, 220
LINQ and, 358
overview, 331–333

document management,
114–120

Document Set feature, 116–118
document sets

custom, 207–222
overview, 116–118
welcome page, 118, 219

documents. See also files
combining with OpenXML,

215–217
converting to alternative

formats, 204–205,
217–218

creating with PowerShell, 524
creation/collaboration tool

for, 207–222
permissions. See permissions
storing on team site, 462
templates. See templates
uploading, 222, 271, 303,

418, 462
Word. See Word documents
XML, 316–318

DocumentSetProperties web part,
210–214

530 Index

E

ECM. See Enterprise Content
Management

editor parts, 144–145
editors, 115
element files, 57, 165, 501, 507
ElementManifest element,

500–501, 502
e-mail events, 167
EnabledScript attribute, 47
Enterprise Content Management

(ECM), 107–131
described, 107
digital asset management,

120–122
document management,

114–120
managed metadata, 107–114
page templates, 34
publishing content, 124–130
web content management,

122–131
enterprise content types, 318–321
enterprise search technology, 423–442

architecture, 423–424
capturing search queries, 435
custom ranking models, 435
custom refinement tools,

440–442
displaying search results, 436
FAST Search, 433
front-end components,

435–442
indexing components,

424–429
OpenSearch, 433
order of search results, 435
query components, 429–435
refining search results,

437–440
SharePoint Search, 433

entities. See also external content types
considerations, 345
creating with SPMetal,

353–357
custom, 414–417
disconnecting, 375–376
metadata, 416–417
reconnecting, 376–378

entity classes, 353–357
Entity Service object, 407–414
EntityTracker object, 380
environment variables, 12

error handling, 27–28
errors

COM, 257
concurrency, 378–381
data entry, 312
debugging. See debugging
Developer Dashboard, 28
JSOM, 300
logging, 27–28
runtime, 338
sandboxed solutions and, 29
security, 485
spelling, 130
strongly typed code and, 360
tracking, 28
try-catch blocks, 27
during upgrade process, 511
validation and, 226
workflow, 233

event handling
advanced techniques, 47–52
Application Services, 153–158
from ribbon, 46–47
server-side, 50–52

event hosts, 154
event receivers, 111, 154–167
events

asynchronous, 155, 162–163
binding, 165–167
deployment, 158
e-mail, 167
enabling/disabling, 163–165
packaging, 158
post-back, 153
properties, 157–158
security issues, 156–157
synchronous, 155, 161–163
workflow services, 255–256

Excel Calculation Services, 266, 267
Excel Services, 265–308

Application Services, 266
business intelligence

strategy, 464
Calculation Services, 266, 267
Client Service, 266–269
configuring, 270–273
data connection libraries, 99,

300–308
demonstration scenario,

273–285
JavaScript Object Model, 268,

297–300
named ranges, 277–278
overview, 265–266

PivotCharts, 280–281
PivotTables, 270, 275–280,

286–287, 293
PowerPivot, 270, 472, 481–485
publishing to, 281, 284, 287
REST API, 268–269, 285–288,

293–294
Slicer, 282–285
user-defined functions, 266,

272–273, 288–297
Web Services, 268
workbooks. See workbooks

Excel Web Access web part, 267–268
Excel Web Apps, 269
Excel-based status indicator, 465
exceptions, 27–28
exporting

connections, 261, 276, 308
sites, 15–16
themes, 137
workflows, 231, 233, 238

expression trees, 366–367
eXtensible Application Markup

Language (XAML), 225
Extensible Markup Language.

See XML
Extensible Stylesheet Language

Transformations (XSLT), 389
extension methods, 340
external content types. See also entities

associations, 392, 399–400
considerations, 404
creating, 394–410
default actions on, 420–422
described, 388
stereotyping, 392–394,

408–414
external data columns, 388–389,

418–422
External Data Connectivity Filter

web part, 390
External Data Item Builder web part,

389–390
External Data Item web part, 389
External Data List, 276–277, 388,

389, 390
External Data List web part, 389
external data parts, 390
External Data Picker Control, 398,

400–404
External Data Related List web

part, 390
External Data Search, 389
External Data web parts, 389–390

 Index 531

external lists
considerations, 89, 276–277
creating, 396, 397, 399
described, 388, 389
rich client integration, 390

ExternalDataExchange attribute,
250–251

ExternalDataExchangeService
attribute, 251–252

F

Facebook, 443
farms. See SharePoint farms
FAST Search, 433
Feature Designer, 497
feature elements, 499–501
feature receivers, 501–508
FeatureManifest element, 496, 500
features, 496–511

activation dependencies,
497–498

activation rules, 498–499
identifiers, 514–515
properties, 499
scopes, 497–498, 503
upgrading, 508–511
versions, 509

federation, 432
Federation Object Model, 432–434
field controls, 123–124, 324–330
field types, 323–330
FieldRenderingControls, 328
fields

adding formulae to, 91
content, 127
described, 131
indexed, 338
page, 127

Fields collection, 331–332
file size, 121
file-level integration, 5–6
files. See also documents

audio, 121
BDCM, 407
CAB, 494
debug script, 49
element, 57, 165, 501, 507
image, 121
ODC, 302, 303, 470
permissions. See permissions
resource, 455–456
script, 49
templates. See templates
trusted, 272, 301

UDC, 99–101
UDCX, 471
uploading, 222, 271, 303,

418, 462
video, 121
ZIP, 138, 206–207

filters
IFilters, 427
limit, 397–398, 399
property filters, 431–432
wildcard, 409

Finder operations, 396, 402–403
Finder stereotype, 408–410
Fixed Value-based status indicator,

465–466
folders

enumerating, 24–25
organizing with, 24–25,

111–112
system, 24

folksonomies, 109, 445
Formatting rules, 101
forms, InfoPath. See InfoPath forms
forms, workflow, 96, 105
front-end web server, 424
functions

in PowerShell, 520–521
user-defined, 266, 272–273,

288–297

G

GAC (Global Assembly Cache),
48, 405

gateway objects, 342
getGlobalCommands method, 50
ghosting/unghosting, 35
Global Assembly Cache (GAC),

48, 405
Groove tool, 3, 6
Group element, 44
groups, 41, 315–316

H

handleCommand method, 50
Hello World button, 46–47
HTML (Hypertext Markup

Language), 268, 443
HTTP (Hypertext Transport

Protocol), 268
Hypertext Markup Language

(HTML), 268, 443
Hypertext Transport Protocol

(HTTP), 268

I

IDisposable interface, 25
IDisposable objects, 25–26
IFilters, 427
IIS (Internet Information Services),

5, 195
image files, 121
importing

Excel data, 275
PowerPivot data, 482
sites, 15–16
workflows, 228, 233–234, 238

indexed columns, 335–336
indexed fields, 338
indexing components, 424–429
Indicator Details web part, 467–468
indicators, 465–467
InfoPath forms

accessing data in, 96–101
adding formulae to fields, 91
creating for lists, 92–93
issues, 99–100
publishing to SharePoint, 82,

84, 91–92
responding to events in,

101–105
rules engine, 101–103
tables, 90–91, 97–98
templates, 83, 86–92
using in SharePoint, 86–96

InfoPath Forms Services, 79–105
BrowserForm web part, 81–86
configuring, 80–81
overview, 79–81

inheritance
from BaseFieldControl class,

328–330
content types, 312–316
from SPField, 324–328

in-memory subqueries, 373–375
integer values, 322
IntelliSense, 30
interactivity, 53, 265, 282–285, 472
Internet, 107
Internet Information Services (IIS),

5, 195
iterators, 339–340, 341

J

JavaScript, 298–299
JavaScript Client Object Model, 53,

60–61, 64

532 Index

JavaScript Object Model (JSOM),
268, 297–300

JavaScript Object Notation
(JSON), 54

JavaScript test page, 60–61
job definitions, 214–215
joins, table, 371–373
JSOM (JavaScript Object Model),

268, 297–300
JSON (JavaScript Object

Notation), 54

L

Lambda expressions, 340–341
layouts, creating web pages with,

128–130
libraries. See also document libraries

columns and, 331–332
content types and, 331–332
data connection, 99, 272,

300–308
maximum number of items

in, 114
PerformancePoint, 469–470
permissions, 301
in PowerShell, 523–524

limit filter, 397–398, 399
LINQ

joining tables, 371–373
locating data via, 341
overview, 338–341
result shaping, 370

LINQ queries, 71, 366, 367, 369–370
LINQ to Objects, 70, 339–340,

342, 366
LINQ to SharePoint

adding data, 358–361
deleting data, 361–365
demonstration scenario,

344–357
objects, 373–375
overview, 341–344
querying data, 365–373
updating information via,

375–384
vs. LINQ to Objects, 366

LINQ to SQL, 342
LINQ to XML, 341
list content types, 332, 349
list throttling, 334–335
lists

associating content types
with, 351

columns and, 331–332
content types and, 331–332
creating custom forms for,

92–93
external. See external lists
overview, 331–333
in PowerShell, 523–524

ListViewWebPart component, 40
Location attribute, 43, 44
locations, 43, 44
logs

history list, 261–262
ULS, 11, 27–28

lookup columns, 322, 352–353,
450, 457

M

Managed Metadata column, 109,
445, 452

Managed Metadata service, 107–114,
173–174, 319–320

managed properties, 428–429,
431, 432

master page tokens, 135–136
master pages, 34, 123, 133–136
MaxSize element, 44
Media Content types, 120–121
memory

in-memory subqueries,
373–375

performance and, 333
metadata. See also data

BDC, 391, 424
content types, 316–318
default, 110–111
entities, 416–417
managed, 107–114
navigation, 111–112
rich media content, 121
XML, 316–318

Microsoft BI solution, 464–465
Microsoft Office. See Office
Microsoft Office SharePoint Server

(MOSS), 3
Microsoft SQL Server, 5
mobile browsers, 40, 316
mobile devices, 40, 316
mobile pages, 40, 316
Module items, 514
MOSS (Microsoft Office SharePoint

Server), 3
MOSS 2007, 387–391, 424
My Network application, 461–462

My Profile page, 452–461
My Sites host, 450–462

N

NCompass Labs, 3
.NET assemblies, 10
.NET connectivity assemblies, 391,

404–417
.NET Framework, 3–4
.NET Reflector, 10
network load, 64
networks

download time, 121, 333
My Network application,

461–462
performance issues, 333

notes, 461

O

objects. See also specific objects
child, 362–364
client-side, 61–64
conflict resolution, 344
custom entity, 414–417
DataContext, 342–344, 376,

380–381
gateway, 342
LINQ to Objects, 70, 339–340,

342, 366, 373–375
LINQ to SharePoint, 373–375
parent, 362–364
in PowerShell, 518–520
properly disposing of, 25–26
properties, 523
setting properties on, 523

ODCs (Office Data Connections),
46, 47, 470, 471

Office applications
integrating with SharePoint,

5–6, 120
using with Windows 2008

Server, 12
web-based, 6, 14, 86, 269

Office Data Connections (ODCs),
46, 47, 470, 471

Office Web Applications, 6, 14,
86, 269

OLAP (Online Analytical
Processing), 463, 464–465, 467

OLAP cubes, 467, 471, 485
OLAP data sources, 472–474,

476, 481

 Index 533

Online Analytical Processing.
See OLAP

OpenSearch, 433
OpenXML, 137, 138, 203, 206–222
operation batching, 64

P

package designer, 494–496
packaging/deployment model,

493–515
activation dependencies,

497–498
deploying assemblies, 496
features. See features
package structure, 494
safe controls, 496
service packs, 509, 512
site definitions, 511–515
upgrades, 508–511
working with packages,

493–496
page components, 49–52
page content type, 123–125
Page directive, 36
page fields, 127
page layouts, 123, 125–130
page model, 122–124
PageParserPath entry, 35–36
pages. See also web pages

adding custom functionality,
140–149

application, 33, 35–36
ASP.NET, 37
attached/detached, 35
editing, 130
ghosted/unghosted, 35
master, 34, 123, 133–136
modifying title, 40
profile, 389, 419–420, 452–461
site, 34
standard, 34
structure, 494
templates, 34
web part, 34
working with, 133–139

parameters file, 355–357
parent objects, 362–364
parsing queries, 337, 366
passwords, 100, 305, 306, 389
PDF, converting Word documents to,

204–206
performance

coding practices and, 26–27

data access, 333–336
list throttling and, 334–335

PerformancePoint Services, 3,
469–480

permissions
forms, 99
item-level, 115
libraries, 301
PowerShell, 522

per-user identity, 473
PivotCharts, 280–281
PivotTables

considerations, 481, 483
in Excel Services, 270,

275–280, 286–287
placeholders, 123
platform development tools, 9–11
pluggable connector framework,

391, 405
pluggable workflow services, 240–257

configuring, 256
creating, 240–257
external activities via, 227
overview, 250–251

PowerPivot, 270, 472, 481–485
PowerPivot for SharePoint, 483–485
PowerPivot reports, 270, 481, 482, 485
PowerShell, 517–525

basics, 517–521
objects in, 518–520
upgrading features with,

509–511
using functions, 520–521
using objects, 518–520

PowerShell for SharePoint, 521–524
activating Developer

Dashboard, 28–29
creating documents, 524
permissions, 522
remote connections, 521–522
timer jobs, 524
working with content, 524
working with lists/libraries,

523–524
working with site collections/

sites, 522–523
presentation layer

application pages, 33, 35
executing server-side code,

35–40
mobile pages, 40
overview, 33–52
site pages, 34, 35

problems. See troubleshooting
ProClarity, 3
profile pages, 389, 419–420, 452–461
projects. See SharePoint projects
properties

crawled, 428–429, 431
events, 157–158
features, 499
managed, 428–429, 431, 432
objects, 523
service applications,

201–202
users, 446–447

property filters, 431–432
protocol handlers, 427
psconfig tool, 509
publishing content, 124–130
publishing items

to Excel Services, 281,
284, 287

workflows, 239, 263

Q

queries
CAML, 10, 65–68, 337, 366
capturing search queries,

435–436
common query language,

431–432
components, 429–442
custom refinement tools,

440–442
inefficient, 367
in-memory subqueries,

373–375
LINQ, 71, 366, 367, 369–370
overview, 332–333
parsing, 337, 366
performing simple, 367–369
ranking, 435
refining search results,

437–440
Shared Query Manager, 437
SQL, 332, 333, 430

query architecture, 424
query limitations, 366
Query Object Model, 429–431,

433–435
Query RSS API, 434
Query Web Service, 434
queryable load, 71
QueryCommand attribute, 46

534 Index

R

ratings, 444
RBS (Remote BLOB Storage), 122
readers, 115
receiver base classes, 154–155
records management, 120
Red Gate .NET Reflector, 10
referential integrity constraints,

362–365
relationships

between content types,
352–353

defining, 352–353
within PowerPivot, 482, 483

remote applications, 174
Remote BLOB Storage (RBS), 122
remote connections, 521–522
Report Builder, 488
Reporting Services, 485–489
Reporting Services web part, 489
reports

BCS, 391, 405
creating with Reporting

Services, 485–489
in Dashboard, 476
modifying with Report

Builder, 488–489
PerformancePoint, 474,

480, 485
PowerPivot, 270, 481, 482, 485
time intelligence, 477–480
via Decomposition Tree,

480–481
Representational State Transfer.

See REST
ResolveAll methods, 382–383
resource files, 455–456
REST (Representational State

Transfer), 268–269
REST API, 268–269, 285–288,

293–294
result shaping, 370
ribbon, 40–52

adding controls to, 42–45
adding custom tab, 42–45
architecture, 40–42
disabling controls, 47
extending, 42–45
handling events from, 46–47
key elements in, 41–42
scaling, 42

ribbon controls, 41
ribbon tabs, 41–42

rich client applications, 64, 124, 390
rich client integration, 390
rich media content, 121
root site, 15, 17
RootFinder method, 426
RSS API, 434
rules, workflow, 225
rules engine, 101–103

S

safe controls, 496
SafeControl entry, 496
Safe-Mode Parser, 496
sandboxed solutions, 29–30
Scale element, 44
scopes, 429, 497–498, 503
script files, 49
script links, 47–49
ScriptLink controls, 48
Search Administration Object

Model, 435
Search Connector Framework,

424–427
search connectors, 426–427
search queries, 435–436
search results

displaying, 436
refining, 437–440

searches
External Data Search, 389
Finder operations, 396,

402–403
picker search functionality,

402–404
SpecificFinder operations,

395–396, 410–414
Secure Store Service, 272,

305–308, 389
security

events, 156–157
passwords, 100, 305, 306, 389
web parts, 140

security errors, 485
sequential workflows, 224
server controls, 34, 127, 140, 145
server farm architecture, 4–5
server object model, 17–28

administration classes, 20–21
best practices, 25–27
configuration classes, 20–21
content access classes, 21–25
error handling, 27–28
overview, 17–20

performance issues, 26–27
saving changes, 25
site provisioning classes, 21–25

server-side code, executing, 35–40
server-side event handling, 50–52
server-side implementation, 169–171
Service Application Framework,

169–202
adding client-side classes,

179–181
adding server-side classes,

176–179
calling service applications,

196–199
capturing user input, 190–193
client/server

communication, 173
client-side implementation,

171–172
configuring service

applications, 173–175
connecting to remote

applications, 174
creating SharePoint

projects, 176
demonstration scenario,

175–202
installing components,

185–187
managing service

applications, 199–202
provisioning instances,

187–195
server-side implementation,

169–171
topology service, 175, 198

service applications
calling, 196–199
configuring, 173–175
managing, 199–202
properties, 201–202
provisioning instances of,

187–195
remote connections, 174

service packs, 509, 512
Shared Query Manager, 437
SharePoint 2010, 3–7

architecture, 4–5
business experience platform,

465–489
enhancements, 424
fundamentals, 14–17
hierarchy, 14–20

 Index 535

integration with Office,
5–6, 120

overview, 3–4
remote connections, 521–522
services architecture, 170–171
user features, 5–7
vs. SharePoint product, 9

SharePoint Designer, 126–128
connecting to BCS data,

392–404
creating workflows with, 227,

262–264
implementing workflows,

233–238
overview, 10

SharePoint farms
custom code and, 29
farm solutions, 6, 30
farm-level configuration, 14
security issues, 130
server farm architecture, 4–5
SPFarm object, 20, 170, 172
system instability in, 29

SharePoint list-based status
indicator, 466

SharePoint lists. See lists
SharePoint Portal Server, 3
SharePoint product, 9
SharePoint projects

creating, 176
installing Service Application

components, 185–187
naming, 176
translation functionality,

183–185
SharePoint Search, 433
SharePoint Server 2010

BI platform, 465–489
considerations, 11, 21
features, 389, 390

SharePoint Workspace, 6
Silverlight Client Object Model

hosting in SharePoint, 55–59
overview, 53–54

Silverlight test page, 55–60
Silverlight web part, 59–60
Simple Object Access Protocol

(SOAP), 269
Single Sign On Service, 389
site collections

creating, 15, 523
deleting, 523
document sets within, 116–117
in PowerShell, 522–523

site columns. See also columns
associating content types with,

349–350
creating, 346–348
described, 332

site content types, 118, 125, 209, 332
site definitions, 512–515
site pages, 34, 35–36
site provisioning, 14–17
site provisioning classes, 21–25
SiteFeatures element, 514–515
sites

child, 15, 17
creating, 15–17
deleting, 523
importing/exporting, 15–16
mobile versions of, 40, 316
in PowerShell, 522–523
root, 15, 17
templates, 15–17, 350–353, 512

Slicer, 282–285
SOAP (Simple Object Access

Protocol), 269
social computing, 443–462
SPContentTypeId object, 314–315
SPContext.Current property, 23
SPDocumentLibrary class, 23
SPDocumentLibrary objects, 23
SpecificFinder operations, 395–396,

410–414
SPException class, 27–28
SPFarm object, 20–21, 170, 172
SPField class, 324–328
SPFieldFile type, 324
SPFieldLookup type, 324
SPFieldType enumeration,

322, 323
SPFile object, 23–24
SPFolder object, 24–25
SPItemEventReceiver class, 154
SPList object, 23, 27, 331
SPListEventReceiver class, 154–155
SPListItem object, 23, 26, 358
SPLongOperation object, 193, 208
SPMetal, 338, 353–357
SPMonitoredScope object, 29
SPQuery object, 26–27
SPRequest object, 25
SPRequestModule component, 40
SPRoot environment variable, 12
SPServer object, 21
SPService class, 21
SPServiceApplication object, 170,

171, 172–173, 199

SPServiceApplicationProxy object,
172, 173, 175

SPServiceInstance object, 21, 170
SPSite object, 22, 25–26
SPUCWorkerProcess.exe process, 30
SPView objects, 332
SPWeb objects, 22, 25–26
SPWebApplication object, 22
SPWebEventReceiver class, 155
SPWebService, 21
SPWorkflowEventReceiver class, 155
SQL (Structured Query Language),

338–339
SQL connections, 97
SQL queries, 332, 333, 367, 430
SQL Server, 5
SQL Server Analysis Service-based

status indicator, 467
SQL Server connections, 391
standard pages, 34
standards compliant web interface,

6–7
state, visualizing in workflows,

238–240
state machine workflows, 224–225
Status List web part, 468–469
stereotyping, 392–394, 408–414
strongly typed code, 360
Structured Query Language. See SQL
STSADM tool, 28, 517, 525
subtypes, 447–449
.svc files, 248
synchronization, 445–446
Sysinternals DebugView, 11
system folders, 24
System.IO.FileNotFound

exception, 13

T

tab expansion, 518
tables

joining, 371–373
in LINQ, 342

tags/tagging, 444–445, 461
taxonomies, 109, 445
Template element, 44
TemplateAlias attribute, 45
templates

activity, 455–457
for compilation process,

220–222
documents, 220–222, 316
forms, 83, 86–92

536 Index

templates (continued)
groups, 41
pages, 34
sites, 15–17, 350–353, 512
TemplateAlias attribute, 45
Word documents, 220–222
workflows, 231, 232–233

term sets, 108
terms, 108, 110–111
text

alternative, 499
in columns, 322
command, 276
description, 498
translating, 183–185,

198–199
text boxes, 237, 240
text values, 260
themes, 137–139
throttling, 26
time intelligence, 477–480
timer jobs, 524
toolbox behavior, 227
topology service, 175, 198
Trace.Write, 11
translation functionality, 183–185
troubleshooting

performance issues, 11
with SPMonitoredScope, 29

trusted data connections, 272, 301,
303, 304

trusted data providers, 272
trusted files, 272, 301
try-catch blocks, 27
Twitter, 453–460
type descriptor, 409–410
TypeMock Isolator, 10

U

U2U CAML Query Builder, 10
UDC (Universal Data Connection),

99–101, 471
UDC files, 99–101
UDCX files, 471
UDFs (user-defined functions), 266,

272–273, 288–297
ULS (Unified Logging Service), 11,

27–28
Unattended Service account, 272,

305, 307–308, 473
Unified Logging Service (ULS), 11,

27–28

uniform resource indicators (URIs),
198, 268

uniform resource locators
(URLs), 269

Universal Data Connection (UDC).
See UDC

Update method, 25
upgrading features, 508–511
uploading documents, 222, 271, 303,

418, 462
URIs (uniform resource indicators),

198, 268
URLs (uniform resource

locators), 269
user database, 445–446
user features, 5–7
user interface customization,

133–149
User Profile Service, 445–462
user profiles, 443–462
user-defined functions (UDFs), 266,

272–273, 288–297
usernames, 15, 305–307, 389, 473
users

activities, 455–461
business user experience, 464
capturing input from, 190–193
of content, 114–115
memberships, 461
organizations, 449–450
personal sites, 450–462
pre-user identity, 473
properties, 446–447
status messages, 453
subtypes, 447–449

V

validation
activities, 226
columns, 330

Validation rules, 101
variables

environment, 12
PowerShell, 519
workflow, 225, 226, 235,

237, 259
video files, 121
Visio 2010

creating workflows with, 228,
257–262

designing workflows with,
231–240

Visio Services, 238–240
Visual Studio 2010

considerations, 3–4
creating BDC Model projects,

405–417
creating site definitions,

512–515
creating workflows with, 228
replaceable tokens,

248–249
SharePoint Designer and, 10
workflow designer tool,

258–262
Visual Studio Debugger, 295,

503–504
Visual Studio IntelliSense, 30
Visual Studio Tools for

Applications, 103
visual web parts, 145–149

W

WCAG (Web Content Accessibility
Guidelines), 6–7

WCF (Windows Communication
Foundation), 54

WCF calculation service, 241–250
WCF components, 181–183
WCF Connection wizard, 391
WCF endpoints, 181, 391
WCF messages, 254–256
WCF proxy class, 196–198
WCF services

calling (pluggable service),
253–254

calling (SharePoint-hosted),
256–257

SharePoint-hosted, 246–250
Windows Forms-hosted,

241–245
web applications, 6, 14, 86, 269
web browsers

BrowserForm web part, 81–86
mobile, 40, 316

Web Content Accessibility Guidelines
(WCAG), 6–7

web content management, 122–131
web pages. See also pages

creating with layouts, 128–130
dashboards, 475–476
dynamic generation of, 131
“standard,” 56

web part pages, 34, 287–288

 Index 537

web parts. See also specific web parts
business intelligence, 465–469
creating, 140–144
custom, 140–144
described, 131
infrastructure, 140
Reporting Services, 489
security, 140
Silverlight, 59–60
visual, 145–149

Web Service Definition Language
(WSDL), 97, 414

web sites
collaborative, 4
creating, 16–17
events raised by, 155
hosting, 170
root site method, 16–17
searching. See searches

WebFeatures element, 514–515
WF. See Workflow Foundation
wildcard filter, 409
Windows 2008 Server, 12
Windows Communication

Foundation. See WCF
Windows Forms, 241–245

sample application, 353–355
Windows Workflow Foundation. See

Workflow Foundation
Word Automation Services, 203–222
Word documents

conversion jobs, 204–206,
217–218

converting to alternative
formats, 204–205, 217–218

converting to PDF, 204–205
custom content types,

208–209
templates, 220–222

Workbook object, 297
workbooks

business intelligence, 464,
465, 485

creating dashboards from,
484–485

Excel, 274–275, 284–285, 293
PowerPivot, 483–485

workflow activities
configuring, 259–262
custom, 226–227

workflow forms, 96, 105
Workflow Foundation (WF), 223–

264. See also workflows
creating workflows with

SharePoint Designer, 227,
262–264

creating workflows with Visio
2010, 228, 257–262

demonstration scenario,
228–231

designing workflows with
Visio 2010, 231–240

fundamentals of, 223–228
workflow services, 255–256
workflows, 223–264. See also

Workflow Foundation
associating with content types,

239–240, 316
considerations, 229
content creation, 115–116
creating with SharePoint

Designer, 227, 262–264
creating with Visio 2010, 228,

257–262
creating with Visual Studio

2010, 228
custom designer, 227
demonstration scenario,

228–231
designing with Visio 2010,

231–240
design-time behavior, 226–227
errors, 233
exporting, 231, 233, 238

implementing with
SharePoint Designer,
233–238

importing, 228, 233–234, 238
overview, 223–224
pluggable. See pluggable

workflow services
publishing, 239, 263
reusable, 234, 239–240, 263
rules, 225
runtime behavior, 226
sequential, 224
state, 238–240
state machine, 224–225
templates, 231, 232–233
toolbox behavior, 227
types of, 224–225
variables, 225, 226, 235,

237, 259
working with, 225–226

WSDL (Web Service Definition
Language), 97, 414

.wsp extension, 494

X

XAML (eXtensible Application
Markup Language), 225

XML (Extensible Markup
Language), 137, 138, 203,
206–222

XML documents, 316–318
XSLT (Extensible Stylesheet

Language Transformations), 389

Z

ZIP files/archives, 138, 206–207

	Contents
	Acknowledgments
	Introduction
	Part I: Introduction to SharePoint 2010 Development
	Chapter 1 The Microsoft SharePoint 2010 Platform
	SharePoint Architecture
	User Features
	Summary

	Chapter 2 Developing with SharePoint 2010
	Development Server Configuration
	SharePoint Fundamentals
	Server Object Model
	Developer Toolbar
	Sandboxed Solutions
	Summary

	Part II: Presentation Layer
	Chapter 3 Presentation Layer Overview
	Page Types
	Ghosting/Unghosting
	Executing Server-Side Code
	Mobile Pages
	Ribbon
	Summary

	Chapter 4 Client Object Model
	Architecture
	Demonstration Environment Setup
	Available Client-side Objects
	Retrieving Data
	Adding Data
	Updating Data
	Deleting Data
	Using the Status Bar, Notifications, and the Dialog Framework
	Summary

	Chapter 5 InfoPath Forms Services
	InfoPath Overview
	InfoPath Forms Services
	Accessing Data in InfoPath Forms
	Responding to Events in InfoPath Forms
	Summary

	Chapter 6 Enterprise Content Management
	Managed Metadata
	Document Management
	Digital Asset Management
	Web Content Management
	Summary

	Chapter 7 User Interface Customization
	Working with Pages
	Adding Custom Functionality
	Summary

	Part III: Application Services
	Chapter 8 Application Services Overview
	Handling Events
	Creating Event Receivers
	Summary

	Chapter 9 Service Application Framework
	Implementation
	Configuring Service Applications
	Demonstration Scenario
	Summary

	Chapter 10 Word Automation Services
	Word Automation Services
	OpenXML
	Demonstration Scenario
	Summary

	Chapter 11 Workflow
	Workflow Foundation Fundamentals
	Demonstration Scenario
	Designing a Workflow Using Visio 2010
	Creating a Pluggable Workflow Service
	Creating a Workflow Using Visual Studio 2010
	Creating a Workflow Using SharePoint Designer
	Summary

	Chapter 12 Excel Services
	Excel Capabilities on SharePoint 2010
	Configuring Excel Services
	Demonstration Scenario
	Using the Excel Services REST API
	User-Defined Functions
	Using the JavaScript Object Model
	Using Data Connection Libraries
	Summary

	Part IV: Data Access Layer
	Chapter 13 Data Access Overview
	Content Types
	Columns
	Lists and Document Libraries
	Performance
	Summary

	Chapter 14 LINQ to SharePoint and SPMetal
	Overview of LINQ
	LINQ to SharePoint
	Demonstration Scenario
	Adding Data Using LINQ
	Deleting Data Using LINQ
	Querying Data Using LINQ to SharePoint
	Combining LINQ to SharePoint and LINQ to Objects
	Updating Information Using LINQ to SharePoint
	Summary

	Chapter 15 Business Connectivity Services
	Business Data Catalog in MOSS 2007
	Demonstration Scenario
	Connecting to BCS Data Using SharePoint Designer
	Building a .NET Connectivity Assembly
	Using BCS Data in External Data Columns
	Summary

	Chapter 16 Enterprise Search
	Components of Enterprise Search
	Summary

	Chapter 17 User Profiles and Social Data
	Folksonomies, Taxonomies, Tagging, and Rating
	User Profile Service Application
	My Sites
	Summary

	Chapter 18 Business Intelligence
	Microsoft Business Intelligence Solution
	SharePoint Server 2010 Business Intelligence Platform
	Summary

	Part V: Configuration
	Chapter 19 Packaging and Deployment Model
	Working with Packages
	Features
	Site Definitions
	Summary

	Chapter 20 PowerShell
	PowerShell Primer
	PowerShell for SharePoint
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

